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Modeling reaction kinetics in a homogeneous medium usually leads to stiff systems of
ordinary differential equations the dimension of which can be large. The problem of de-
termination of the minimal number of phase variables needed to describe the characteristic
behavior of large scale systems is extensively addressed in current chemical kinetics literature
from different point of views. Only for afew of these approaches there exists a mathematical
justification. In this paper we describe and justify a procedure alowing to determine directly
how many and which state variables are essential in a neighborhood of a given point of the
extended phase space. This method exploits the wide range of characteristic time-scalesin a
chemical system and its mathematical justification is based on the theory of invariant mani-
folds. The procedure helps to get chemical insight into the intrinsic dynamics of a complex
chemical process.

KEY WORDS: invariant manifold, singularly perturbed system, small parameter, phase
space, chemical kinetics

1. Introduction

Modeling reaction kinetics in a homogeneous medium usualy leads to tiff sys
tems of ordinary differential equations the dimension of which can be quite large. One
of the important questions extensively addressed in current chemical kinetics literature
is related to the problem of determination of the minimal number of phase variables
needed to describe the characteristic behavior of large scale systems (see, e.g., [1,2]).
There are different approaches to reduce models describing complex chemical processes.
The first, most frequently used approach is based on the presence of a wide range of
characteristic time-scales in a chemical system. Its smplest variants are the gquasi-
steady state assumption (QSSA) (see, e.g., [3-5]), and the quasi-equilibrium assump-
tion (QEA) (see, e.g., [6]). The method of intrinsic low dimensional manifolds (see,

133

0259-9791/01/0800-0133$19.50/0 J 2001 Plenum Publishing Corporation



134 S. Handrock-Meyer et al. / Dimension of long-time dynamics in multi-scale systems

e.g., [7-9]) also belongs to that type of reduction methods. Other procedures involve ap-
plication of conservation relations, lumping of species (molecular and structural lump-
ing, see [10,11]), sensitivity analysis (see [12]) and replacing differential equations by
input-output relations (special case of the general procedure called repro-modelling,
see [2,13]). Only for afew of these approaches there exists a mathematical justifica-
tion.

In what follows we propose a method to approximate a number which character-
izes the dimension of the underlying long-time dynamics in a multi-scale system. We
estimate this dimension from above at different points in the extended phase space. Our
estimate is based on the method of integral manifolds which can be also used to justify
the QSSA and QEA. Knowing only the number of phase variables responsible for under-
lying dynamics in achemical system can help to make conclusions about its qualitative
behavior (oscillations, chaos), as well asto get chemical insight into intrinsic dynamics
of the process.

Let us introduce some notions related to the topic of our discussion. We assume
that the adequate mathematical model can be written in the form of a system of ordinary
differential equations

% = h(z, 1), (1.1
where z is an n-vector. In the case when different characteristic time scales related
to fast and slow reactions are present in the chemical kinetics system, the mentioned
above approach, QSSA, can be used to reduce the number of differential equations in
system (1.1). For that the derivatives of fast variables are assumed to be zero. Con-
sequently, we arrive at a differential-algebraic system which represents under certain
additional conditions a dynamical system on the constrained manifold. This procedure
requires some knowledge of the underlying chemistry telling uswhich variables are Slow
and which are fast.
In case when (1.1) can be rewritten as asingularly perturbed system

& fx,yt,€)

-V = X,y, ,€),

d (12)

gd_y: (x,y,t,¢8)
dr gLo Y b8,

wherex e R”, y € R, n = m + k, and ¢ isasmall positive parameter, the problem of
distinguishing fast and slow variables can be easily solved. Setting e = 0in (1.2) we get
the differential-algebraic system

dx
azf(x’y’t,o),

O=g(x,y,10),

(1.3)
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which is called the degenerate systefor (1.2). If we are able to solve the second equa-
tion with respect to y, y = ¢(x, ), then we can substitute y by ¢(x, ¢) in the first
equation and get the differential system

dx
5 = /(e 0,1,0), (1.4)

which is said to be the reduced degenerate systdéon (1.2) and whose state space has
the dimension m = n — k. The claim that for sufficiently small positive ¢ the qualitative
behavior of system (1.2) near the surface y = ¢(x, ) is determined by the behavior of
system (1.4) can be justified by means of the theory of invariant manifolds for singularly
perturbed systems (see, e.g., [14,15]) under the condition that the spectrum of the Jaco-
bian g, (x, ¢(x, 1), t, 0) islocated in the left half plane for all (x, #) under consideration.

Oneimportant problem in studying (1.1) isto find out which variables are fast at the
point z = zg and at thetime ¢ = 1y. To treat this problem we consider first the spectrum
o2 of the Jacobian J° of the right-hand side of (1.1) at (zo, o). A crucial step isto divide
a0 into two digoint parts, 0° = ¢°, U 02, where the real parts of all eigenvalues of o,
are less than —v, v > 0. Then we look for a transformation such that J° is equivalent
to a matrix diag(Sy;, $9,) with o (S2,) = ¢°,. The main goa of this paper is to derive
conditions guaranteeing that the splitting of the spectrum o into ¢, and o° implies
a splitting of the variables into fast and sow. To this end we prove the existence of a
locally invariant manifold of system (1.1) near (zo, fo) Which is exponentially attracting.

The approach to use the spectrum of the Jacobian J° in order to find out which
variables are fast has been applied also by Maas [7] and by Maas and Pope [8] and by
Deuflhard and Heroth [16] in case of an autonomous system. Deuflhard and Heroth
use the method of asymptotic expansion of the solution to an initial value problem of a
singularly perturbed system to get information on the local error of the approximation
of (1.2) by the differential-algebraic system (1.3), whereas Maas gives no mathematical
justification for the introduction of his so-called “intrinsic manifolds’.

The paper is organized as follows. In section 2 we prove a modification of Gron-
wall’s lemma and recall some basic facts about the real Schur decomposition. In sec-
tion 3 we prove a theorem about the existence of an integral manifold for a singularly
perturbed system with a special structure. Here, particular attention is devoted to the
estimate of the e-interval for which the manifold exists. Our agorithm for determin-
ing the points in the (x, ¢)-space where the dimension of the state space of the reaction
system (1.1) can be reduced is presented in section 4. In section 5 we illustrate our
approach by some examples. The first example is a reaction scheme due to Duchéne
and Rouchon [17], the second represents the famous Oregonator [18], the last one is
related to a tropospheric chemistry model which exhibits oscillations and chaos (see,
e.d., [19,20]). Short conclusion with a brief discussion of the results is presented in the
last section.
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2.  Preéiminaries

In this section we prove a modification of Gronwall’s lemmaand recall some basic
facts about the block diagonalization of amatrix by means of areal Schur decomposition
which will be used to derive asingularly perturbed system with a specia structure.

The following lemmais known as Gronwall’'s lemma.

Lemma2.1. Let k; be a positive constant, let k, and k3 be nonnegative constants. Let
f be acontinuous nonnegative function defined on the interval o < ¢ < 8 satisfying for
al r theinequality

t
f@) < k1/ f(s)ds + ko(t — ) + k3. (2.2)
Then, for o < ¢ < B, we have
ko _ ko
< | Z= 1(t—a) __ G
f(t)\ (k1+k3>ek k]_

Under the assumptions of this lemma, the right-hand side of (2.1) is monotone
increasing in ¢. The following lemma is concerned with a similar inequality but under
the assumption that the right hand side is monotone decreasing.

Lemma 2.2. Letthe constantsk;, k», k3 and the function f be asabove, and let f now
satisfy

B
£y < ky / Fs)ds + ka(B — 1) + k. (22)
Then, for o < ¢ < B, it holds
f(0) < (E + k3>e"1</f‘—’> _ ke (2.3)
ky k1

Proof. We introduce the nonnegative function x by x(z) := f(t) + k»/k1, and the
nonnegative constant kq := k»/ k1 + k3. Then, from (2.2) we get that x satisfies

B
x(@) < kl/ x (s)ds + ko. (2.4)

From (2.4) we derive
' x () <1
klfz x(s)ds + kg
Multiplication by k; and integration yields

B B
t klfS x(s)ds + kg t
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which is equivalent to

B
h/‘ﬂnm+%<méwﬂ
t

Using (2.4) we get
x (1) < koet#=0).
Taking into account the definition of x we have

k k
F@O) <24 ks)erfn - 22, O
kz ky

To prove the existence of an attracting invariant manifold y = 7(x, ¢, ¢) for sys-
tem (1.2) we need that g, has eigenvalues with sufficiently large negative real parts.
The following procedure aims to find at a given point (zo, 7o) in the space of motion
of system (1.1) a coordinate transformation such that in the new coordinates 4, (zg, to)
has a block-diagonal structure where one block has only eigenvalues with negative real
parts. This transformation contributes also to finding out the fast variables in (1.1). The
first step of this procedure is the so-called real Schur decomposition. According to [21,
chapter 7.4.1] we have:

Proposition 2.1. For any real n x n-matrix M there exists an orthogonal n x n-matrix
Q such that Q"M Q has the structure

Riy Rz ... Ry
QTMQ R 0 Ry ... Ry
0 0 ... Ry

where each R;; iseither a (1 x 1)-matrix or a(2 x 2)-matrix having complex conjugate
eigenvalues.

The matrix R represents a real Schur decomposition. To get an ordering of the
eigenvalues of R according to the magnitude of their real parts we can apply the so-
called Givens rotations (cf. [21, chapter 7.6.2]). Hence, without loss of generality, we
may assume the ordering Reo (R;;) > Reo (Ri;1,41) fori=1,...,1 —1.

Now we split the spectrum o (R) of R by means of the splitting parameter v > 0
into two digoint sets

o_y = {k € o(R): Re: < —v},
o, :={1 € 6(R): ReA > —v}.

Then R may be written in the form

_(Su S
R—(o &)’
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where S11 and S,, are upper triangular matrices with possible non-vanishing entries
on the first sub-diagona related to complex conjugate eigenvalue pairs such that
o, =0 (S1) ando_, = o (S2).

Thetransformation of R into ablock-diagona matrix can be performed asfollows.
We determine the sub-matrix Z inthen x n-matrix Y,

I z
=0 7):

-1 _ S 0
Y RY = ( 0 Szz>'

-1 (1 —Z S11 Si2 1 Z
YRY_(O 1)(0 YACKY.
(S SuZ—ZS»n+ S
~\ 0 S
_ Sll 0
L0 S»
we obtain the following matrix equation for Z:

S1uZ — Z85» = —Sp.
If weset T = QY, then we have

in such away that we have

From

S:=TMT =y1Q"MQY =Y~ 'RY = Su 0 ,
0 Sy

which has the block-diagonal structure we are looking for.

3. Existenceof an integral manifold of a singularly perturbed system

Our goal isalocal reduction of the state space of system (1.1) in aneighborhood N
of agiven point (zo, fo) by means of alocal exponentialy attracting invariant manifold.
For this purpose we prove in this section a theorem on the existence of a unique global
integral manifold M, for the following singularly perturbed system with a specia struc-
ture:

dul

—— = f(uy, up, 1),
. 3.1

duz
e = Bujy + eg(uy, uz, t).

The intersection of the globa integral manifold M, with the neighborhood A
yields the loca integral manifold of interest to us. The proof of the existence of M,
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requires that the functions f and g in (3.1) are defined everywhere. To satisfy this con-
dition we modify f and g outside A so that they vanish there identically. Consequently,
the assumption (A,) on f and g presented below can be considered as local assumption
concerning the neighborhood .

The method to establish the existence of M, is basically the same as in [15] but
our special concern isto give an estimate of the e-interval for which the global integral
manifold exists.

We consider system (3.1) for sufficiently small ¢ (0 < ¢ < &*) under the following
assumptions:

(A)). f:G:=R" xR xR — R” and g : G — R* are continuous and continu-

ously differentiable with respect to all variables.

(A). Let|-| bethe Euclidean norm. There are positive constants ¢y, ¢z, ca1, Ca2,
cs1, csp suchthat f and g satisfy in G the conditions

| f(uz, uz, )| < ca,

|g(u1, uz, )| < ca, (3.2)
| fuy, up, 1) — f(iy, o, 1)| < carluy — Tal + caplup — 2], (3.3)
|g(uy, uz, 1) — g(i, U, 1)| < cspluy — U1l + cspluz — |, (3.4)

for al (ug, uos, t), (ﬁl,ﬁz, ) eq.

(A3). Bisaconstant k x k-matrix whose eigenvalues A; have negative rea parts,
i.e., there is a positive number y such that Rei; < —y < 0Vi.

For e = 0, (3.1) has the integral manifold u, = 0. It is natura to expect that, for
sufficiently small ¢, (3.1) has an integral manifold M, near u, = 0. Hence, our godl is
to prove the existence of an integral manifold for (3.1) with the representation

uz = n*(uy, t, &) := ep(uy, t) + 0(82) for0 < ¢ < &%,
where n* depends continuoudly on its variables. We are especialy interested in estimat-
ing e*.

The underlying idea of the corresponding proof is to find the function n* as fixed
point of an appropriate operator in some complete metric space. To thisend weintroduce
the function space C(d, 1), where d and [ are positive constants, which consists of al
functions n mapping D := R™ x R x [0, £] continuously into R* (¢ is some positive
number) and having the properties

In(uyt,e)| <d V(ui,t,¢) € D, (35)
In(uy.t,€) —n(i, 1, 6)| <llug — 1| V(us.t,e), (. t,e) € D.  (3.6)

If weendow C(d, I) with the norm

Inl = sup |n(us,t,e)l, (3.7)

(uy,t,e)eD

we get a complete metric space.



140 S. Handrock-Meyer et al. / Dimension of long-time dynamics in multi-scale systems

Forn € C(d, ) we consider the initial value problem

du
d_tl = f(ur. n(us. t,€),1), uito) = ul, (3.8)

whereug isany given pointinR™. From (A;) and (A,) it followsthat f (11, n(us, t, €), t)
is continuous and uniformly bounded. Moreover, we have

| f(u1, nu,t,8), 1) — f(i1, n(in, 1, €),1)| < (car + capl)ug — i1
Y(ui, t,¢), (U1, t,€) € D. (3.9)

Thus, (3.8) has a unique solution u; = ¢"(t, ¢, u?) defined for + € R and satisfying
@"(to, &, u?) = u§. Substituting ¢"(t, ¢, u?) into the second equation of (3.1) we get

8% = Buz + eg(¢"(t, &, u3), uz, ). (3.10)

In the same way as above we can conclude that under our assumptions the Cauchy prob-
lem for (3.10) has a unigue global solution.
Let X (z, , ¢) be the fundamental matrix of the linear system

duz B
&E—— = bu
dr 2

satisfying X (t, t,¢) = I, that is,

X(t,t,6) = exp(B[_—t)
£

Let | - | be the matrix norm induced by the Euclidean vector norm that is |A| =
Vo(ATA) where o denotes the spectral radius.
According to assumption (A3) thereisaconstant ¢ > 1 such that (see, e.q., [22])

X (1,7, )] < cexp(—y(tg_ 2

) fort > rande > 0. (3.11)

If we assume that up = n*(ug, ¢, &) with n* € C(d, 1) isan integral manifold M
of (3.1) then n*(¢" (t, &, u?), t, &) is asolution of (3.10) which is uniformly bounded.
Under our assumptions it is easy to prove that a global solution of (3.10) which is uni-
formly bounded satisfies the integral equation

t
us(t, e, ul) = / X(t, 7, 0)g(@" (v, &, ul), uz(z, &, u), 7) dr. (3.12)

Thus, n*(¢" (¢, &, u?), t, &) satisfies (3.12). Therefore, weintroduce the operator 7
definedon C(d, I) by

t

(Tn)(ug, t, 5) = / X, r, s)g(q)"(r, g, ug), n((p"(r, g, ug), T, 8), r) dr. (3.13)

—00
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Lemma 3.1. Let d and ! be given positive numbers. Under the assumptions (A1)—(A3)
and under the additional conditions
£ <4, (3.14)
Y
ec(cs1 + cspl)

y —elcar +cal)
elcar +cead) <y (3.16)

(3.15)

the operator 7 maps the complete metric space C(d, 1) into itself.

Proof. Under our assumptionsit is easy to show that 7 n is continuous for n € C(d, ).
Next, we prove that 7 is uniformly bounded. From (3.13), (3.11), and (3.2) we get

t
‘(Tr]) (ug’ t, g)l < / Ce*)’(tft)/scz dr

—00
CCoE

==
Now we show that (7 1), t, ¢) is Lipschitzian in u?. From (3.8) it follows that
N
(p'7(s, e, ug) = ug + / f((p"((f, g, uo), n((p"(a, g, ug), o, 8), a) do,
0 (3.17)
Q" (s, e, ud) =u + / f(e"(o, e, 7)), n(¢" (0,6, u)), 0,¢),0)do.
fo
Using (3.3), (3.6), (3.9) we have
|@" (s, &, u3) — ¢"(s. £.71)|
< |u(1) — ﬁﬂ + / (ca1 + C4zl)|<p"(a, g, uo) — (p”(a, g, ﬁf)| do.
o
By means of Gronwall’s inequality (lemma2.1) we obtain for s > 1
‘(p"(s, g, ug) — @ (s, g, ﬁf)‘ < ‘ug — ﬁf‘e(c“l*c“zl)(s*m). (3.18)
Incases < to weget from (3.17)
|@"(s. 8. ud) — @"(s. &.77) |
fo
< |u2 - ﬁf| + / (ca1 + C421)‘<p"(a, e, ug) - (p"((f, g, ﬁlo)‘ do.
According to (2.3) (lemma 2.2) we have
075, £.19) = 97(5,£,79)] < [ud — TPJetontesons

From (3.13), (3.11), (3.4), (3.6), (3.14), (3.16) and (3.18) withs = 1, 1o = r we
obtain
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(T (ul. 1. 6) — (T (a5, 1, ¢)|

t
< / ce e g (o (v, &, ud). nle" (v, 6, ud) 7. 8). )

9]

—g(o"(r. e, u), n(¢"(t.e.u7), . €), 7)| dr

t
< c(cs1 + cs2l) / 9" (t. e, ul) — " (z, &, ;) [€ 7 dr
—0o0

'
< clesy + Cszl)|ug _ ﬁ10| / g r—elemtea)t=1)/¢ g
—00

ce(csy+csad) | o _p
Yy — &(car + cal)

Hence, under the assumption of lemma 3.1 the operator 7 maps C(d, 1) intoitself. [

Lemma 3.2. Under the assumptions of lemma 3.1 the mapping 7 : C(d,1) — C(d,1)
is Lipschitzian in 7.

Proof. From (3.13), (3.11), (3.6) and (3.4) we get
(T (u3, 1, €) = (TM(ud, 1, 2)]

t
< / ce T g (9" (v, 8. ud), n(e" (v, £, ud). 7. 8). )

o0

—g(e"(r, e, ud). 1" (. e, ud), T, €), 7) | dr

t
< c/ e—V(t—r)/€<651|(pﬂ(.L—, e, ud) — ¢ (v, &, ud)|

9]

+ cs2(|n(@"(z, &, u), T, €) — n(¢"(z, &, ud), 7, €)|

+ [n(e"(x, e, 19). 7. ) = T (x. & u). 7. 2)]) ) e

t
< clesy + cszl)/ e_’”(’_f)/8|<p’7(r, g, u(l)) —¢'(1, ¢, u2)| dr
—00

CECr2

lIn = l. (3.19)
From (3.17), (3.3), and (3.7) it follows
@7 (v, &, u2) — ¢"(z, &, ul)|
< [ 1o e 0o 9).5.6).9)

- f(gOﬁ(S, g, ug)v ﬁ(‘pﬁ(& &, M?), S, 8), S)l dS
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t
< [ (calo.ecud) = 7. )
T

+caa(|n(e (s, &, u), 5, 8) — (9" (s, &, u3), 5, )|
+ |n(e"(s, &, u), s, &) —7(¢"(s, &, ul), s, 8)‘)) ds
t
< / ((car + caa)|@" (s, &, u3) — " (s, &, u3) ) ds + calln =77l (¢ = ).
T

According to lemma 2.2 we have

|<p’7(t, e, MO) _ (pﬁ(t, g, u2)| < M(e@uﬂmz)(l—f) _ 1)' (3.20)
ca1 + caol

Substituting (3.20) into (3.19) and taking into account (3.16) we get

(T (. 1, 6) = (T (3. 1. 6|

c(csy + le Y L _ cec _
(cs1 52) canlln — 77||/ e t)/e(e(C41+lC42)(f 0 1) dr + 52”77 _
ca1+lea —00
_ < e%c(cs1 + lesp)ea 4 68652) In — il
vy (y — e(car + lca))
ce [ e(cs1+ lesp)ea _
=—( +C5z>lln—nll- O
Y \v —&(ca + caal)

From lemmas 3.1 and 3.2, by applying Banach's fixed point theorem, we obtain
the result:

Lemma 3.3. Under the assumptions of lemma 3.1 and under the additional condition

g( &(cs1 + lesp)ean

+c <g<l1 3.21
Y \y — &(ca1 + caol) 52) 1 (32D

the operator 7 has a unique fixed point n* in C(d, 1).

Sinceit can be easily checked that u, = n*(uq, t, £) represents an integral manifold
of (3.1), we obtain from lemma 3.3:

Theorem 3.1. Under the assumptions of lemma 3.1 and under the additional condi-
tion (3.21) the singularly perturbed system (3.1) has an integral manifold MY :=
{(u1, up) € R™*: uy = n*(uy, t, ¢)}, where n* belongs to the class C(d, 1).

Remark 3.2.1t is obvious that the inequalities (3.14), (3.15), (3.16), and (3.21) are sat-
isfied for sufficiently small . Hence, theorem 3.1 can be formulated as
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Theorem 3.3. Under the assumptions (A;)—(A3) and for sufficiently small ¢ the sin-
gularly perturbed system (3.1) has an integra manifold M%! = {(uy,up) € R
us = n*(uy, t, &)} where n* belongs to the class C(d, 1).

For given d and [ the inequalities (3.14), (3.15), (3.16), and (3.21) determine a
maximal positive number ¢*(d, I) such that (3.1) has an integral manifold M¢d-! for
0 < ¢ < &*. With respect to applications we want to maximize ¢*. Since we are
more interested to prescribe a small neighborhood of the origin (measured by d) than a
small Lipschitz constant, we will use ! to maximize &*.

If ca1 = cap = 51 = 52 = 0 then the inegualities (3.15), (3.16) and (3.21) are
satisfied trivially. Now we assume that at least one of these constants is positive.

From (3.16) and (3.15) we get the inequalities

l
e < 4 =:&2(]).
c(cs1 + cspl) + 1(car + caol)

It is obvious that
e1(l) = ex(l) forl > 0.
Under the condition (3.15), the inequality (3.21) is equivalent to
g%c(cs1cap — cspcar) + £y (cspc + car + cal) < y2. (3.22)
L et us introduce the notation
Kk = c(Ca2C51 — C41C52), W= ccsp + ca1 + caol.

Incasex = 0, (3.22) reads
14
= ge3(0).
C52C + a1 + capl 3
Itiseasy to verify that ex(1) < e3(l) foradll > 0.
The case k < 0 can be reduced to the case «k = 0. Now we assume k > 0. In that
case, (3.22) isequivalent to

&<

2
82+sy—M < )/_. (3.23)
K K

It isobvious that (3.23) is satisfied for
Y 2y
e<—(—pnu+vVul+d)= ——
2k < ) Vi + 4+
Proving that e,(1) < e4(1) forl > Qisequivaent to establishing that
[

2
< :
cesrHlp S+ 4+

=:e4(0).
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Thisinequality holds if we have
1% < c2cE) + cesil . (3.24)
The vaidity of (3.24) follows from the obvious inequality
Ik < cesit.

Consequently, to maximize ¢* as a function of / we have to look for the maximum
of e2(1). It is easy to verify that (1) takes its maximum

14
ccsp + 2 /ccsicap + can

[ = — A/ €C42C51
: 7642 .
Thus, we have:

Lemma 3.4. Under the assumptions cs; > 0, c4p > 0, £* takesits maximum for [ = I*.

4. Local state spacereduction

Let us return to our origina n-dimensional system

% =h(z,1), (z,1) e R" xR, (G

and assume that % is twice continuoudly differentiable with respect to z and ¢. The goal
of our investigations is to derive conditions which ensure that we can approximate a so-
lution of (4.1) in some regions of the (z, t)-space by a solution of asystem of differential
equations whose dimension of the state space isless than n. To justify such a reduction
we will exploit the existence of an attracting locally invariant manifold (a.l.i.m.) of (4.1)
near the point (zo, f9). For these purposes wetransform system (4.1) into aform to which
we can apply theorem 3.1.

Let (20, fo) be agiven point. We use the upper index © in order to indicate that we
consider some expression at the point (zg, o). Under our differentiability assumptions,
(4.1) is equivaent to the system

d ~
d_j = h° + 7%z — z0) + h(z, , 20, 1), (4.2)

where
h(z,t,20,10) = h(z,t) — h° — J%(z — z0), J° = h,(z0. o).
Near (zo, tg) We have

E(Zv 1, 20, [0) = O(|Z - Z0|2 + |t - tol)
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Now we compute the spectrum o of J° and decompose it into the digoint sets¢° and
a0 where the real parts of all eigenvalues of ¢° are less than —v, v > 0. From the
method of block diagonalization it follows that there is aregular matrix T such that

T~1J°T =: 5° = diag(S5;. 5%). (4.3)

where S9; and S9, are upper triangular matrices with possible non-vanishing en-
tries on the first sub-diagonal related to complex conjugate eigenvalues and such that
o(89) =02 a(8%,) = o°,. Applying the coordinate transformation z = zo + Tu we
get from (4.2)

du

&= T2 + 8% + T Yh(zo + Tu, t, 20, 10). (4.9)

Taking into account the block diagonal structure (4.3) we may represent (4.4) inthe form

du; =~ _
d—l = hf + S?l”l + ha(u, t, 2o, t0),

' (4.5)
o + Sx,ouz + ho(u, t, 2o, to).

Now we multiply the second equation with ¢,, &, := v, and denote by §§2 the
matrix defined as Sy, := ¢, 5%,. Then (4.5) reads

du;  ~ —
d_tl =h{ + Shus + hi(u, t, 20, to),
du ~7 =0 -
Svd_l‘z = gvhg + Syoup + eyha(u, t, 2o, to),

where all eigenvalues of ESZ have red parts less than —1. In what follows we consider
the singularly perturbed system

du ~0 =

d_tl = S(1)1”1 + h](_) + hl(u7 t, <0, t0)7

o o ~ B (4.6)
SE = SooUz + ehg + ehy(u, t, 2o, to)

for 0 < ¢ < ¢, which has the same structure as system (3.1) with

0 ~0 ., 7
fuy, up, t) =Sqqus + hy + ha(uy, uz, t, 2o, to),
P
g(ug,up, 1) =hy+ ho(u, us, t, o, fo).

For ¢ = 0, (4.6) has the invariant manifold u, = 0. If we are able to prove that (4.6)
has an al.i.m. us = n*(u1, t, &) = ep(uy, t) + O(e?) for 0 < ¢ < &, passing through
ad-neighborhood of (1 = 0, = 1) then we can conclude that dso (4.1) has a locally
invariant exponentially attracting manifold near (zo, #). If additionaly (zq, tp) liesinthe
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region of attraction of this invariant manifold and 4 is small then we can approximate
the orbit of (4.1) through (zo, fo) by an orbit of the reduced differential system
dul
dr
Now we describe the procedure to finding out the essential variablesin system (4.1)

near (zo, to) by means of theorem 3.1 which is equivaent to alocal reduction of the state
space.

= S](_)1u1+7’l\](_)+zl(ula ep(u, 1), 1, 20, fo). (4.7)

S1. We compute the spectrum o of JO. If o° has no eigenvalue with negative
rea part, then we replace (zo, fo) by another point (which we get, for example,
by numerical integration starting at (zg, fo)). In case we do not find any point
(zo, 1) We are not able to reduce the dimension of the phase space by this
method.

S2. We assume o has eigenval ues with negative real parts —3; < --- < —A1 <0
(it suffices to have at least one). We choose a negative number —v, the so-
called splitting parameter, such that we have —1; < —v < —A;_4 for some j
and compute the real Schur decomposition S° = diag(S3;, 3,) to the splitting
parameter —v, that is

ReU(Szz) < )\-] —V,
Reo (59) >

—V.

In case that the eigenvalues of S9, with the real part —; are simple, we can
put v = A; inall other caseswe assume v < ;. Now weset ¢, := v=1. Thus,
wehave Res (5%, <y = 1.

S3. Wetransform (4.1) into the form (4.6).

S4. Let 3, bethe ball in R}, x Rf x R with radius ¢ centered at (0, r). We
choose a (small) number d (c.f. (3.5)) and derive estimates for the constants
1, €2, Ca1, Ca2, C51, Cs2 iNtroduced in assumption (A») with respect to X;.

S5. We compute the constant ¢ to estimate |e?¢~/¢|. (In the case where all eigen-
values are simplewe can set ¢ = 1)

S6. We calculate [* and check the inequalities (3.14)—«3.16) and (3.21) with
y =1, ¢ = ¢,. If the inequalities are satisfied then we can state the exis-
tence of alocal integral manifold of (4.1) in X, by means of theorem 3.1, and
system (4.1) can be reduced to (4.7). If the inequalities are not satisfied we
go back to S2 and choose a splitting parameter v with larger modulus, i.e., the
corresponding ¢, becomes smaller.

S7. In case we cannot further increase the modulus of v we replace (zo, fg) by
another point and go back to S1.
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In casethat d is sufficiently small we can approximate the constants ¢, . . ., ¢sp as
follows:
Co =~ |h§

v 0 A s s
, e ~ |Sh|, cap ~ 0, cs1 ~ 0, cs2 ~ 0.

If we use these approximations we call the corresponding agorithm a simplified ago-
rithm. In case of the simplified algorithm we have e1(l) = &3(1) = e3() = e4(]) =
189,171, Thus, the Lipschitz constant / has no influence on ¢*. To prove that (4.6)
has an invariant manifold for ¢ = ¢, we have to verify the inequalities (3.14)—3.16)
and (3.21) which are equivaent under our assumptions to

59 n9
Bal o dral _, (4.8)
1% v

We note that in the case when all eigenvalues of J° have negative real parts then the first
of the inequalities (4.8) is always satisfied.

5. Examples

The following examples of chemical reactions will be used to illustrate our simpli-
fied agorithm to determine fast and slow variables by localizing an invariant manifold,
and therefore, to give alocal reduction of the dimension of the state space. All hecessary
calculations were performed by MAPLE and MATLAB.

5.1. Example by Duchéne and Rouchon
The following simple reaction scheme has been considered in [17]:

X1£> Xo, X2£> Xy, X1+X2ﬁ> X2+ X3,

where X;, X,, X3 arechemical species, and k1, k», and 8kq are reaction rate constants.
The small parameter § > 0 is used to indicate that the third reaction is slow in compar-
ison with the other two reactions. This reaction scheme can be described by the system
of ordinary differential equations

dx
d_tl = —k1x1 + koxo — Skox1x2,
dx
—2 = kyx1 — koxa,
dc)lct
3
— =k ,
dl‘ 0X1X2
where x; isthe concentration of X;, i = 1, 2, 3. It isobvious that the third equation isa

linear combination of the first and the second one so that we can restrict ourselves to the
system
dx;
dr
dx;
—_ = klxl - k2X2.

dr

= —kyx1 + koxo — Skoxixz,
(5.1)
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Before we apply our (simplified) algorithm to (5.1) we will prove the existence of
an invariant manifold for (5.1) and derive an asymptotic approximation for it. Thisway
we will be able to study the effectivity of the proposed procedure.

By means of the coordinate transformation & = x; +x,, x, = x, weget from (5.1)

d
d_i = —dko(§ — x2)x2,
(5.2
A2 € xa) — kox
dr — k1 2 2A2-
By rescaing thetimer, + = 61z, and introducing the notation
@) =), x(87't) = yal1),
we obtain from (5.2)
d
% = —koy1y2 + koy3.
T
q (5.3
8% =k1y1 — (k1 + k2)y2,

which represents asingularly perturbed system. The corresponding degenerate equation

0=kiy1 — (k1 + k2)y2 := g(y1, y2)
has the unique solution

1
= h = s
Y2 = ho(y1) Ytk n
moreover, the corresponding inequality holds:
g
J(y1, ho(yn)) := ——= = —(k1+ k) < 0.
Y2 | y,=ho(y0)
By the transformation
Y2 2 [ kz)’L
we obtain from (5.3) the system
dy; kokiky 5 ko(ki — k2) 2
—_— = wy + kow5,
dr ~ (athk?t " hktky T2 (5.4)
dw; dkq { kokika 5 ko(ky — k2) 2} '
b— =—(k1+ kp)wy — — wy + kows ¢,
g R T I k2t T kRO

which has the form (3.1). It is easy to verify that in a compact region of the phase plane
al conditions of theorem 3.1 are satisfied for sufficiently small §. Thus, (5.4) has an
invariant manifold M of the form

w2 = 8p1(y1) + O(8?).
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A straightforward computation yields

_ _kokke
p1(y1) = Ut k2L
hence, we have
kok?ky )
wy = §————y7 + O(5).
* =Gt ki T OC)
In the origina coordinates M has the implicit representation
k1 kok1kz 2
= 1+6—— 0(87) ). 55
2 k1+k2(XI+XZ)< * (k1+k2)3(XI+XZ)+ ( )> 539

In what follows we apply the simplified algorithm to system (5.1) in order to decide
whether near a given point x° the dimension of the phase space can be reduced. In the
sequel we fix the parameters as

ko = 10, ky =2, ko =3, 5 =0.01,
so that (5.1) reads

dx

d_tl = —le + 3X2 — O.l)C]_XZ,
dx

—2 = le — 3x2.

dr

Table 1 contains the sample of four points (x9, x3) to be considered.

Now we use our simplified approach to check whether these points are near an ex-
ponentialy attracting integral manifold of system (5.1) and thus, whether the dimension
of the phase space may be reduced in some neighborhood of these points.

First we apply the coordinate transformation described in section 4 to (5.1) with
respect to each initia point (cases 1o Vo). In case |g we obtain

% = —1.1889 — 0.3704u; — 0.0335u3 — 0.0073uyu, + 0.0356u3,

d
f = —14.8091 — 5.1296u, 4 0.0292u2 + 0.0064u1u, — 0.0311u3.

We get analogous systems in the other cases.

Table1
Coordinates of the first sample.

lo I I Vo
x](_) 2.0000 0.5000 3.0000 0.0000
9 5.0000 2.0000 0.5000 0.0000
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Table 2
Characteristic data determined by the simplified algorithm.
lo o o Vo

A —0.3704 —0.1383 —0.1532 0
Ap=—v —5.1296 —5.0617 —4.8968 -5
189, 1/v 0.0722 0.0273 0.0313 0
h21/v 2.8870 1.3642 1.2978 0
d 0.3 0.3 0.3 0.3
IT| 1.0876 1.1011 1.0765 1.1049
IT|d =ro 0.3263 0.3303 0.3229 0.3315

Table 3

Coordinates of the second sample.

la lla b Ia

x? 3.6247 1.2147 1.3204 2.2301
xg 2.7154 1.3286 1.1027 1.2067

Asneighborhood X, of u; = u, = 0O we choose adisc with radiusd = 0.3, that is,
o3 := {u € R? |u| <0.3}. Fromx — x® = Tu we get

|x —x0| <|T|d :=ro.

Since the eigenvalues are smple, we set e;1 = v = |A,|, so that we have y = 1.
Obvioudly, ¢ = 1 holds, and we obtain the results represented in table 2.

Since all eigenvalues are negative the condition 189,1/v < lissatisfied in all cases,
but the condition [ 9]/v < d = 0.3 does not hold in the cases 1o-11o.

Figure 1 showsthe invariant manifold M (dotted line) and the solutions of (5.1) for
the start points 1o V. It can be seen that corresponding trajectories tend to the curve
M whichisthe zeroth-order approximation of the attracting invariant manifold M, and
that u; = u, = Oislocated on M. The disks centered at the corresponding points have
theradii ro = | T |d. We should note that 7', and hence r, depends on the given point. If
the inequalities (4.8) are satisfied for some points, then the corresponding balls contain
anal.im. of (5.1).

It is obvious that in the cases lg—111g the initial points have a distance to M which
islarger than ro.

Now we compute the trgjectories with the initia points 1o 11 for some time steps
and get the new points described in table 3. If we repeat the calculations above we obtain
the results represented in table 4.

We see that the inequality @)l/v < 0.3isnot satisfied only in the case lla. More-
over, figure 1 shows that the computed points la, I1b, llla have a distance to M which
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Figure 1. Invariant manifold M and location of the selected points.

Table 4
Characteristic data determined by the simplified algorithm.
la lla Ib la
A1 —0.3084 —0.1262 —0.1182 —0.1613
Ap = —v —4.9616 —5.0079 —4.9916 —4.9631
189,1/v 0.0622 0.0252 0.0237 0.0325
n3l/v 0.1369 0.3995 0.1788 0.2555
d 0.3 0.3 0.3 0.3
IT| 1.0711 1.0943 1.0933 1.0846
IT|d =rg 0.3213 0.3283 0.3279 0.3254

is smaller than rg that is, the corresponding balls contain an a.l.i.m., but in the case lla
this distance is larger than rq. Thus, the cases lla and 11b show how exactly the method
works. Consequently, in the cases Ia, I1b and I11athe phase space can be reduced.
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5.2. Oregonator

The following differential system describes the basic mechanism of the oxidation
of malonic acid in an acid medium by bromate ions catalyzed by cerium, of the so-
called Belousov—Zhabotinskii reaction. It represents the Field-Noyes model also known
as Oregonator. We consider it in the form (see, e.g., [18])

1 2
81—— =x1+gx2 — x1X2 — X7,

dr

dx

d_t2 =8, (—gqx2 + 2f x3 — x122), (5.6)
dxs

E =X1 — X3,

where 8;, &,, and g are small positive constants, f is assumed to be near 0.5. Sys
tem (5.6) has two biochemically relevant equilibrium points PY = (0,0,0), PSS =
(x3, x3, x3), where

1 1/2
B=s1-2f — ) +[@-2f - P +4g1+2)]"
2 S
x;z leS’
q+x3
X3 =Xx3.

The equilibrium point PY = (0, 0, 0) is unstable, the Jacobi matrix of (5.6) at PS
has at least one eigenvalue with negative real part (see also [18]). By a suitable choice
of the constants 81, 8», g, the equilibrium point PS can be made asymptotically stable.
It can be shown that to given 85, ¢, f, system (5.6) has for sufficiently small §; an
invariant manifold M; (see[23,24]). In what follows we set

81 = 1075, 8, = 1071, g = 1074, f =025,

Then, the zeroth-order approximation of M can be obtained by setting §; = 0in the
first equation of (5.6)

x1 + 107%x, — x1xp — xf =0 (5.7)

and solving this equation with respect to x;. It is obvious that the branch k of the so-
lution set of (5.7) islocated in the positive orthant of the (x;, x1)-plane and can be ap-
proximated by the straight linesx; = 1 — x,for0 < x, < landby x; = Oforx, > 1.
The projection of the zeroth-order approximation of M; into the (x5, x1)-plane coin-
cides with the curve k. Now we consider the sample of points described in table 5 and
ask whether near these points there is an attracting locally invariant manifold (a.l.i.m.)
such that we can reduce the dimension of the phase space. There exists a coordinate
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Table5
Coordinates of the first sample.

lo o o
x§ 11000 03000  0.0141

xg 1.2000 0.5000 0.9929
xg 1.1000 0.4000 0.0141

Table 6
Characteristic data determined by the simplified algorithm.

la Ib o g
A1 —2.5559 —2.5559 +2.0016 +0.0345
A2 —3.9455 —3.9455 +8.9775 +5.3791
A3 —240005 —240005 —10014 2120
v [22] 23] 23] 23]
189,1/v 0.6478 164x10° 89649 x 1074 25368 x 1073
h21/v 33176 0.5445 0.1901 0
d 103 103 103 103
IT| 8.4057 8.4057 5.1049 2.8256
IT|d =rg 0.009 0.009 0.006 0.003

transformation x — x° = Tu such that system (5.6) takes the form (4.5). In case Ig we
obtain

d

% = —2.5559u1 + 11.1917 + 2.6319u? + 11.6813u3 + 192.09u3
— 11.4474u uy + 44.9696u 113 — 97.7963u,u3,

duz

5 = 39455, — 1.9696 — 0.6516u2 — 2.1624u5 — 47.5535u3 59
+ 2.5652u1u7 — 11.1326u1u3 + 21.914%u3,

% = —240005u3 + 130897 — 17521u? + 109257u5 — 12791793
+ 7326.14uquy — 299466u1u3 + 62583u7u3.

We obtain analogous systems in the other cases. Our goal isto show that near some
points u = u° there is an attracting locally invariant manifold of (5.8). We note that the
coefficients of the higher order termsin (5.8) are large. In order to be able to apply our
simplified algorithm we have to choose the radius d sufficiently small. In our case we set
d = 1073, The corresponding radius in the original coordinates can then be estimated
by ro = |T'|d. The results of our simplified algorithm are summarized in table 6.

Sincein case | three different negative eigenval ues exist we can use two essentially
different scaling parameters (v = |A,| in case laand v = |A3| in case Ib), but the fact
that the initial point in case | is far from the invariant manifold implies that no scaling
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Table7
Coordinates of the second sample.
Ic lla
2 0.0002 0.4623
x9 1.4300 0.5414
x9 0.0002 0.4623
Table 8
Characteristic data determined by the simplified algorithm.
Ic lla
A —0.0020 —0.1010 + 3.0313i
A2 —0.9975 —0.1010 — 3.0313i
A3 —40040.0 —46005.4
v 40040.0 46005.4
159,1/v 2.4912 x 105 2.1959 x 10~°
h21/v 1.4975 x 10~4 1.1823 x 10~4
d 103 103
IT| 10.1441 2.6543
IT|d =rg 0.011 0.003

is successful. The inequalities (4.8) can be verified only in case I11¢ which represents a
stable equilibrium point. In that case, our algorithm saysthat in aball with radius 0.003
centered at the equilibrium point an a.l.i.m. of (5.6) islocated. This fitsinto the theory
that the equilibrium point is located on the invariant manifold.

Now we use numerical integration to get new points in the cases I and 1, repre-
sented in table 7.

Table 8 contains the characteristic data determined by the simplified algorithm ap-
plied to these new points.

Now, in both cases the conditions (4.8) are satisfied and we can justify the existence
of an al.i.m. of system (5.6) in asphere with radius 0.01 in case laand 0.003 in case lla

5.3. Simplified reaction mechanism describing dynamics of ozone in the troposphere

The following simplified reaction mechanism describing the dynamics of species
in the troposphere was introduced in [20]:

O3 4 hv + (H20) % 2HO + (0y),
HO' + CO + (Oz) 3 HO, + (COy),
HO, + 03 22 HO + (20,),

NO + O3 4 NO, + (0,),
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NO, + hv + (O,) 23 NO + O,
HO, + NO 8 HO" + NO,,
HO + NO, % (HNO).

In this mechanism the concentrations of species O, and H,O are assumed to be con-
stant. Presence of hv is some of the relations means that the corresponding reactions
are photochemical. The numerical values of reaction rate constants are taken to be
ky = 6.9 x 1078 ks = 3.9 x 1073 (s1), kp = 1.9 x 1075, k3 = 1.5 x 1075,
ka=7.9x 103 kg = 9.6 x 10712, k7 = 1.3 x 107! (cm3/(molec-s)).

The emissions of CO, O3 and NO are also taken into account. Their corresponding
rates in molec/(cm? - s) are Fco = 5.0 x 10°, Fo, = 6.0 x 10% Fyo isconsidered to be
aparameter of order O(10*-10°). In what follows, the time variable is scaled by 10° s.

Under condition of ideally mixed troposphere the behavior of the concentrations
of the speciesis described by the system of ordinary differential equations

da_ +F
— = —K2X1Xi N
o 2%1%5 + Fco
dx,
Pl —k1xo — kaxexz — kaxaxz + ksxg + Fo,,
dx
d—3 = —kaxzxy + ksxq — kexexs + Fno,
[ (5.9
dx4
o kaxsxy — ksxa + kexexs — kzxsxa,
dxs
rre 2kyxz — koxsxy + kaxexz + kexexs — k7xsxa,
dx
d_[6 = k2x5x1 — ngeXz — keXeXg.

Here x1, x5, x3, x4, x5 and xg are the concentrations of CO, Oz, NO, NO,, HO and
HO,, respectively. System (5.9) has been studied in [19]. Depending on Fyo, different
types of the long-time behavior of solutions to this system have been observed. They
include (case 1) transition to a stable steady state (Fyo = 1.5 x 107, see figure 2(a)),
(case I1) a stable limit cycle (Fno = 5.0 x 10%, see figure 2(b)), (case 1) chaotic
behavior (Fno = 7.6 x 107, seefigure 2(c)).

Estimation of a number of phase variables sufficient for complete description of
all the types of behavior mentioned above is an important topic actively discussed in the
literature (see, e.g., [25,26]). Most authors, however, currently use heuristic methods for
the analysis.

Here we apply the simplified algorithm to study the dimension of the underlying
long-time dynamics of the originally six-dimensional tropospheric model. For that we
choose some points which are located on or very near to the trgjectories represented in
the figures above. The points used in the algorithm are presented in table 9.
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Figure 2. (a) Solution of (5.9) tending to an equilibrium. (b) Periodic solution of (5.9). (c) Chaotic solution
of (5.9).
Table9
Points chosen on the trgjectories shown in figure 2(a)—(c).
I (x107) lla(x10%) I1b (x107) Ila(x10°) I11b (x107)
x(l) 13536 507481 31361 1643120 66123
xg 11051 360233 34711 5384483 58646
xg 1 4009 1 1683876 2
9 6 2944 1 1837126 2
x2 2 1 4 3 3
0 186 3 332 6 368
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Table 10
Characteristic data determined by the simplified algorithm.

| lla b lla b
A —2+5i 0.0 —3+0i 0.0 —0.0 + 0.0i
Ao —2 5 0.0 —3-09i 0.0 —0.0 — 0.0i
A3 -2 -0.0 -2 —0.0 —-0.0
Aa —306 —6870 —499 —8290 —440
A5 —21734 —9010 —58194 —59310 —43750
A6 —27545 —164660 —61922 —654170 —129240
v 306 6870 499 8290 440
159, 1/v 0.007 0.0 0.006 0.0 0.0
h21/v 0.0068 0.0057 0.0577 0.1085 0.048
d 0.01 0.01 0.06 0.12 0.06
IT| 1.8014 1.7558 1.8828 1.7043 1.8843
IT|d =rg 0.018 0.01756 0.1130 0.2045 0.1131

Chosen points are taken at different locations on various trajectories representing
characteristic features of possible types of behavior of the system. Point | corresponds
to a situation when the trgjectory relaxes to a stable steady state. It is known that oscil-
latory trajectories of the tropospheric chemistry systems usually have two very distinct
phases: so-called, high- and low-NO, regimes (i.e., the regimes for which the concen-
trations of both NO and NO, are high or low; see, e.g., [27]). These two regimes are
characterized by domination of completely different underlying chemical processes, and
that is why the question on estimation of local underlying dimensions for both casesis
so very interesting. Points Ila and I1b belong to an oscillatory trajectory for high- and
low-NO, subintervals within aperiod of an oscillation, respectively. PointsIllaand I11b
correspond to high- and low-NO, situations in the case of chaotic behavior of the system.

Same as in the previous examples, we represent the values of various parameters
computed according to the simplified algorithm in table 10. We note that in this example
¢ =1also.

In al cases condition (4.8) is satisfied, and thus, we can conclude that the dimen-
sion of the underlying long-time dynamics for tropospheric chemistry model that we
discuss in this section can be estimated by 3.

6. Conclusion

In this paper we presented and justified an algorithm that allows usto estimate local
dimension of long-time dynamics in multi-scale systems. The specia feature that dis-
tinguishes this approach from other widely used asymptotic approaches isthe following.
When using asymptotic reduction algorithms, the dimension of the underlying dynamics
is defined in the limit when some small parameters tend to zero (or large parameters
tend to infinity). This approach is useful when the corresponding mathematical model
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isgiven in the form of asingularly perturbed system (1.2). But in other situations, with
given numerical values of coefficients, it is often difficult to decide which parameters
are small (large) and which are not, and how the numerical choice of small (large) para-
meters is related to the procedure of taking the limit and making prediction on the local
dimension of slow dynamics. In our approach thelocal dimension is estimated explicitly
for a given problem in terms of given numerical values of coefficients and parameters
entering formulation of a problem. The estimate is valid for the vicinity of a particular
chosen point of interest, and the size of this vicinity is aso determined numerically by
the algorithm.

We illustrated the algorithm by applying it to three non-trivial chemical kinetics
examples. The results obtained using our algorithm (especidly, for the tropospheric
chemistry model) are difficult to derive using other methods. These results are not only
of theoretical, but also of high practical importance to the researchers working in the
area of tropospheric chemistry.

Finally, we would like to mention that, in principle, our local analysis can also be
used to derive an agorithm for a dynamic reduction of the dimension of the state space
for systems with multiple time-scales. In addition, it can be applied for approximation
of invariant manifolds for such systems.
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