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Modeling reaction kinetics in a homogeneous medium usually leads to stiff systems of
ordinary differential equations the dimension of which can be large. The problem of de-
termination of the minimal number of phase variables needed to describe the characteristic
behavior of large scale systems is extensively addressed in current chemical kinetics literature
from different point of views. Only for a few of these approaches there exists a mathematical
justification. In this paper we describe and justify a procedure allowing to determine directly
how many and which state variables are essential in a neighborhood of a given point of the
extended phase space. This method exploits the wide range of characteristic time-scales in a
chemical system and its mathematical justification is based on the theory of invariant mani-
folds. The procedure helps to get chemical insight into the intrinsic dynamics of a complex
chemical process.

KEY WORDS: invariant manifold, singularly perturbed system, small parameter, phase
space, chemical kinetics

1. Introduction

Modeling reaction kinetics in a homogeneous medium usually leads to stiff sys-
tems of ordinary differential equations the dimension of which can be quite large. One
of the important questions extensively addressed in current chemical kinetics literature
is related to the problem of determination of the minimal number of phase variables
needed to describe the characteristic behavior of large scale systems (see, e.g., [1,2]).
There are different approaches to reduce models describing complex chemical processes.
The first, most frequently used approach is based on the presence of a wide range of
characteristic time-scales in a chemical system. Its simplest variants are the quasi-
steady state assumption (QSSA) (see, e.g., [3–5]), and the quasi-equilibrium assump-
tion (QEA) (see, e.g., [6]). The method of intrinsic low dimensional manifolds (see,
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e.g., [7–9]) also belongs to that type of reduction methods. Other procedures involve ap-
plication of conservation relations, lumping of species (molecular and structural lump-
ing, see [10,11]), sensitivity analysis (see [12]) and replacing differential equations by
input-output relations (special case of the general procedure called repro-modelling,
see [2,13]). Only for a few of these approaches there exists a mathematical justifica-
tion.

In what follows we propose a method to approximate a number which character-
izes the dimension of the underlying long-time dynamics in a multi-scale system. We
estimate this dimension from above at different points in the extended phase space. Our
estimate is based on the method of integral manifolds which can be also used to justify
the QSSA and QEA. Knowing only the number of phase variables responsible for under-
lying dynamics in a chemical system can help to make conclusions about its qualitative
behavior (oscillations, chaos), as well as to get chemical insight into intrinsic dynamics
of the process.

Let us introduce some notions related to the topic of our discussion. We assume
that the adequate mathematical model can be written in the form of a system of ordinary
differential equations

dz

dt
= h(z, t), (1.1)

where z is an n-vector. In the case when different characteristic time scales related
to fast and slow reactions are present in the chemical kinetics system, the mentioned
above approach, QSSA, can be used to reduce the number of differential equations in
system (1.1). For that the derivatives of fast variables are assumed to be zero. Con-
sequently, we arrive at a differential-algebraic system which represents under certain
additional conditions a dynamical system on the constrained manifold. This procedure
requires some knowledge of the underlying chemistry telling us which variables are slow
and which are fast.

In case when (1.1) can be rewritten as a singularly perturbed system

dx

dt
= f (x, y, t, ε),

(1.2)
ε

dy

dt
= g(x, y, t, ε),

where x ∈ Rm, y ∈ Rk, n = m+ k, and ε is a small positive parameter, the problem of
distinguishing fast and slow variables can be easily solved. Setting ε = 0 in (1.2) we get
the differential-algebraic system

dx

dt
= f (x, y, t, 0),

(1.3)
0= g(x, y, t, 0),
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which is called the degenerate systemfor (1.2). If we are able to solve the second equa-
tion with respect to y, y = ϕ(x, t), then we can substitute y by ϕ(x, t) in the first
equation and get the differential system

dx

dt
= f

(
x, ϕ(x, t), t, 0

)
, (1.4)

which is said to be the reduced degenerate systemfor (1.2) and whose state space has
the dimension m = n− k. The claim that for sufficiently small positive ε the qualitative
behavior of system (1.2) near the surface y = ϕ(x, t) is determined by the behavior of
system (1.4) can be justified by means of the theory of invariant manifolds for singularly
perturbed systems (see, e.g., [14,15]) under the condition that the spectrum of the Jaco-
bian gy(x, ϕ(x, t), t, 0) is located in the left half plane for all (x, t) under consideration.

One important problem in studying (1.1) is to find out which variables are fast at the
point z = z0 and at the time t = t0. To treat this problem we consider first the spectrum
σ 0 of the Jacobian J 0 of the right-hand side of (1.1) at (z0, t0). A crucial step is to divide
σ 0 into two disjoint parts, σ 0 = σ 0−ν ∪ σ 0

r , where the real parts of all eigenvalues of σ 0−ν

are less than −ν, ν > 0. Then we look for a transformation such that J 0 is equivalent
to a matrix diag(S0

11, S0
22) with σ (S0

22) = σ 0−ν . The main goal of this paper is to derive
conditions guaranteeing that the splitting of the spectrum σ 0 into σ 0−ν and σ 0

r implies
a splitting of the variables into fast and slow. To this end we prove the existence of a
locally invariant manifold of system (1.1) near (z0, t0) which is exponentially attracting.

The approach to use the spectrum of the Jacobian J 0 in order to find out which
variables are fast has been applied also by Maas [7] and by Maas and Pope [8] and by
Deuflhard and Heroth [16] in case of an autonomous system. Deuflhard and Heroth
use the method of asymptotic expansion of the solution to an initial value problem of a
singularly perturbed system to get information on the local error of the approximation
of (1.2) by the differential-algebraic system (1.3), whereas Maas gives no mathematical
justification for the introduction of his so-called “intrinsic manifolds”.

The paper is organized as follows. In section 2 we prove a modification of Gron-
wall’s lemma and recall some basic facts about the real Schur decomposition. In sec-
tion 3 we prove a theorem about the existence of an integral manifold for a singularly
perturbed system with a special structure. Here, particular attention is devoted to the
estimate of the ε-interval for which the manifold exists. Our algorithm for determin-
ing the points in the (x, t)-space where the dimension of the state space of the reaction
system (1.1) can be reduced is presented in section 4. In section 5 we illustrate our
approach by some examples. The first example is a reaction scheme due to Duchêne
and Rouchon [17], the second represents the famous Oregonator [18], the last one is
related to a tropospheric chemistry model which exhibits oscillations and chaos (see,
e.g., [19,20]). Short conclusion with a brief discussion of the results is presented in the
last section.
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2. Preliminaries

In this section we prove a modification of Gronwall’s lemma and recall some basic
facts about the block diagonalization of a matrix by means of a real Schur decomposition
which will be used to derive a singularly perturbed system with a special structure.

The following lemma is known as Gronwall’s lemma.

Lemma 2.1. Let k1 be a positive constant, let k2 and k3 be nonnegative constants. Let
f be a continuous nonnegative function defined on the interval α � t � β satisfying for
all t the inequality

f (t) � k1

∫ t

α

f (s) ds + k2(t − α)+ k3. (2.1)

Then, for α � t � β, we have

f (t) �
(

k2

k1
+ k3

)
ek1(t−α) − k2

k1
.

Under the assumptions of this lemma, the right-hand side of (2.1) is monotone
increasing in t . The following lemma is concerned with a similar inequality but under
the assumption that the right hand side is monotone decreasing.

Lemma 2.2. Let the constants k1, k2, k3 and the function f be as above, and let f now
satisfy

f (t) � k1

∫ β

t

f (s) ds + k2(β − t)+ k3. (2.2)

Then, for α � t � β, it holds

f (t) �
(

k2

k1
+ k3

)
ek1(β−t ) − k2

k1
. (2.3)

Proof. We introduce the nonnegative function χ by χ(t) := f (t) + k2/k1, and the
nonnegative constant k0 := k2/k1 + k3. Then, from (2.2) we get that χ satisfies

χ(t) � k1

∫ β

t

χ(s) ds + k0. (2.4)

From (2.4) we derive

χ(t)

k1
∫ β

t
χ(s) ds + k0

� 1.

Multiplication by k1 and integration yields∫ β

t

k1χ(ξ)

k1
∫ β

ξ
χ(s) ds + k0

dξ � k1

∫ β

t

dξ,
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which is equivalent to

k1

∫ β

t

χ(s) ds + k0 � k0ek1(β−t ).

Using (2.4) we get

χ(t) � k0ek1(β−t ).

Taking into account the definition of χ we have

f (t) �
(

k3

k2
+ k3

)
ek1(β−t ) − k2

k1
. �

To prove the existence of an attracting invariant manifold y = r(x, t, ε) for sys-
tem (1.2) we need that gy has eigenvalues with sufficiently large negative real parts.
The following procedure aims to find at a given point (z0, t0) in the space of motion
of system (1.1) a coordinate transformation such that in the new coordinates hz(z0, t0)

has a block-diagonal structure where one block has only eigenvalues with negative real
parts. This transformation contributes also to finding out the fast variables in (1.1). The
first step of this procedure is the so-called real Schur decomposition. According to [21,
chapter 7.4.1] we have:

Proposition 2.1. For any real n × n-matrix M there exists an orthogonal n × n-matrix
Q such that QTMQ has the structure

QTMQ =: R =




R11 R12 . . . R1l

0 R22 . . . R2l

...
...

. . .
...

0 0 . . . Rll


 ,

where each Rii is either a (1× 1)-matrix or a (2× 2)-matrix having complex conjugate
eigenvalues.

The matrix R represents a real Schur decomposition. To get an ordering of the
eigenvalues of R according to the magnitude of their real parts we can apply the so-
called Givens rotations (cf. [21, chapter 7.6.2]). Hence, without loss of generality, we
may assume the ordering Re σ (Rii) � Re σ (Ri+1 i+1) for i = 1, . . . , l − 1.

Now we split the spectrum σ (R) of R by means of the splitting parameter ν > 0
into two disjoint sets

σ−ν :=
{
λ ∈ σ (R): Re λ < −ν

}
,

σr :=
{
λ ∈ σ (R): Re λ � −ν

}
.

Then R may be written in the form

R =
(

S11 S12

0 S22

)
,
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where S11 and S22 are upper triangular matrices with possible non-vanishing entries
on the first sub-diagonal related to complex conjugate eigenvalue pairs such that
σr = σ (S11) and σ−ν = σ (S22).

The transformation of R into a block-diagonal matrix can be performed as follows.
We determine the sub-matrix Z in the n× n-matrix Y ,

Y =
(

I Z

0 I

)
,

in such a way that we have

Y−1RY =
(

S11 0
0 S22

)
.

From

Y−1RY =
(

I −Z

0 I

)(
S11 S12

0 S22

)(
I Z

0 I

)

=
(

S11 S11Z − ZS22 + S12

0 S22

)

=
(

S11 0
0 S22

)
we obtain the following matrix equation for Z:

S11Z − ZS22 = −S12.

If we set T = QY , then we have

S := T −1MT = Y−1QTMQY = Y−1RY =
(

S11 0
0 S22

)
,

which has the block-diagonal structure we are looking for.

3. Existence of an integral manifold of a singularly perturbed system

Our goal is a local reduction of the state space of system (1.1) in a neighborhood N
of a given point (z0, t0) by means of a local exponentially attracting invariant manifold.
For this purpose we prove in this section a theorem on the existence of a unique global
integral manifoldMε for the following singularly perturbed system with a special struc-
ture:

du1

dt
= f (u1, u2, t),

(3.1)
ε

du2

dt
=Bu2 + εg(u1, u2, t).

The intersection of the global integral manifold Mε with the neighborhood N
yields the local integral manifold of interest to us. The proof of the existence of Mε
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requires that the functions f and g in (3.1) are defined everywhere. To satisfy this con-
dition we modify f and g outside N so that they vanish there identically. Consequently,
the assumption (A2) on f and g presented below can be considered as local assumption
concerning the neighborhood N .

The method to establish the existence of Mε is basically the same as in [15] but
our special concern is to give an estimate of the ε-interval for which the global integral
manifold exists.

We consider system (3.1) for sufficiently small ε (0 < ε � ε∗) under the following
assumptions:

(A1). f : G := Rm ×Rk ×R→ R
m and g : G→ R

k are continuous and continu-
ously differentiable with respect to all variables.

(A2). Let | · | be the Euclidean norm. There are positive constants c1, c2, c41, c42,

c51, c52 such that f and g satisfy in G the conditions∣∣f (u1, u2, t)
∣∣� c1,∣∣g(u1, u2, t)
∣∣� c2, (3.2)∣∣f (u1, u2, t)− f (̃u1, ũ2, t)
∣∣� c41|u1 − ũ1| + c42|u2 − ũ2|, (3.3)∣∣g(u1, u2, t)− g(̃u1, ũ2, t)
∣∣� c51|u1 − ũ1| + c52|u2 − ũ2|, (3.4)

for all (u1, u2, t), (̃u1, ũ2, t) ∈ G.

(A3). B is a constant k × k-matrix whose eigenvalues λi have negative real parts,
i.e., there is a positive number γ such that Re λi < −γ < 0 ∀i.

For ε = 0, (3.1) has the integral manifold u2 ≡ 0. It is natural to expect that, for
sufficiently small ε, (3.1) has an integral manifoldMε near u2 ≡ 0. Hence, our goal is
to prove the existence of an integral manifold for (3.1) with the representation

u2 = η∗(u1, t, ε) := εϕ(u1, t)+ O
(
ε2
)

for 0 < ε � ε∗,

where η∗ depends continuously on its variables. We are especially interested in estimat-
ing ε∗.

The underlying idea of the corresponding proof is to find the function η∗ as fixed
point of an appropriate operator in some complete metric space. To this end we introduce
the function space C(d, l), where d and l are positive constants, which consists of all
functions η mapping D := Rm × R × [0, ε] continuously into Rk (ε is some positive
number) and having the properties∣∣η(u1, t, ε)

∣∣ � d ∀(u1, t, ε) ∈ D, (3.5)∣∣η(u1, t, ε)− η(̃u1, t, ε)
∣∣ � l|u1 − ũ1| ∀(u1, t, ε), (̃u1, t, ε) ∈ D. (3.6)

If we endow C(d, l) with the norm

‖η‖ = sup
(u1,t,ε)∈D

∣∣η(u1, t, ε)
∣∣, (3.7)

we get a complete metric space.
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For η ∈ C(d, l) we consider the initial value problem

du1

dt
= f

(
u1, η(u1, t, ε), t

)
, u1(t0) = u0

1, (3.8)

where u0
1 is any given point inRm. From (A1) and (A2) it follows that f (u1, η(u1, t, ε), t)

is continuous and uniformly bounded. Moreover, we have∣∣f (u1, η(u1, t, ε), t
) − f

(̃
u1, η(̃u1, t, ε), t

)∣∣ � (c41 + c42l)|u1 − ũ1|
∀(u1, t, ε), (̃u1, t, ε) ∈ D. (3.9)

Thus, (3.8) has a unique solution u1 = ϕη(t, ε, u0
1) defined for t ∈ R and satisfying

ϕη(t0, ε, u0
1) = u0

1. Substituting ϕη(t, ε, u0
1) into the second equation of (3.1) we get

ε
du2

dt
= Bu2 + εg

(
ϕη
(
t, ε, u0

1

)
, u2, t

)
. (3.10)

In the same way as above we can conclude that under our assumptions the Cauchy prob-
lem for (3.10) has a unique global solution.

Let X(t, τ, ε) be the fundamental matrix of the linear system

ε
du2

dt
= Bu2

satisfying X(τ, τ, ε) = I , that is,

X(t, τ, ε) = exp

(
B

t − τ

ε

)
.

Let | · | be the matrix norm induced by the Euclidean vector norm that is |A| =√
4(ATA) where 4 denotes the spectral radius.

According to assumption (A3) there is a constant c � 1 such that (see, e.g., [22])

∣∣X(t, τ, ε)
∣∣ � c exp

(
−γ (t − τ)

ε

)
for t � τ and ε > 0. (3.11)

If we assume that u2 = η∗(u1, t, ε) with η∗ ∈ C(d, l) is an integral manifoldMd,l
ε

of (3.1) then η∗(ϕη∗(t, ε, u0
1), t, ε) is a solution of (3.10) which is uniformly bounded.

Under our assumptions it is easy to prove that a global solution of (3.10) which is uni-
formly bounded satisfies the integral equation

u2
(
t, ε, u0

1

) = ∫ t

−∞
X(t, τ, ε)g

(
ϕη
(
τ, ε, u0

1

)
, u2

(
τ, ε, u0

1

)
, τ
)

dτ. (3.12)

Thus, η∗(ϕη∗(t, ε, u0
1), t, ε) satisfies (3.12). Therefore, we introduce the operator T

defined on C(d, l) by

(T η)
(
u0

1, t, ε
) := ∫ t

−∞
X(t, τ, ε)g

(
ϕη
(
τ, ε, u0

1

)
, η
(
ϕη
(
τ, ε, u0

1

)
, τ, ε

)
, τ
)

dτ. (3.13)
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Lemma 3.1. Let d and l be given positive numbers. Under the assumptions (A1)–(A3)

and under the additional conditions
εcc2

γ
� d, (3.14)

εc(c51 + c52l)

γ − ε(c41 + c42l)
� l, (3.15)

ε(c41 + c42l) < γ (3.16)

the operator T maps the complete metric space C(d, l) into itself.

Proof. Under our assumptions it is easy to show that T η is continuous for η ∈ C(d, l).
Next, we prove that T is uniformly bounded. From (3.13), (3.11), and (3.2) we get

∣∣(T η)
(
u0

1, t, ε
)∣∣� ∫ t

−∞
ce−γ (t−τ )/εc2 dτ

= cc2ε

γ
.

Now we show that (T η)(u0
1, t, ε) is Lipschitzian in u0

1. From (3.8) it follows that

ϕη
(
s, ε, u0

1

)= u0
1 +

∫ s

t0

f
(
ϕη
(
σ, ε, u0

1

)
, η
(
ϕη
(
σ, ε, u0

1

)
, σ, ε

)
, σ
)

dσ,

(3.17)

ϕη
(
s, ε, u 0

1

)= u 0
1 +

∫ s

t0

f
(
ϕη
(
σ, ε, u 0

1

)
, η
(
ϕη
(
σ, ε, u 0

1

)
, σ, ε

)
, σ
)

dσ.

Using (3.3), (3.6), (3.9) we have∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u 0

1

)∣∣
�
∣∣u0

1 − u 0
1

∣∣+ ∫ s

t0

(c41 + c42l)
∣∣ϕη
(
σ, ε, u0

1

)− ϕη
(
σ, ε, u 0

1

)∣∣ dσ.

By means of Gronwall’s inequality (lemma 2.1) we obtain for s � t0∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u 0

1

)∣∣ � ∣∣u0
1 − u 0

1

∣∣e(c41+c42l)(s−t0). (3.18)

In case s � t0 we get from (3.17)∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u 0

1

)∣∣
�
∣∣u0

1 − u 0
1

∣∣+ ∫ t0

s

(c41 + c42l)
∣∣ϕη
(
σ, ε, u0

1

)− ϕη
(
σ, ε, u 0

1

)∣∣ dσ.

According to (2.3) (lemma 2.2) we have∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u 0

1

)∣∣ � ∣∣u0
1 − u 0

1

∣∣e(c41+c42l)(t0−s).

From (3.13), (3.11), (3.4), (3.6), (3.14), (3.16) and (3.18) with s = τ, t0 = t we
obtain
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∣∣(T η)
(
u0

1, t, ε
)− (T η)

(
u 0

1 , t, ε
)∣∣

�
∫ t

−∞
ce−γ (t−τ )/ε

∣∣g(ϕη
(
τ, ε, u0

1

)
, η
(
ϕη
(
τ, ε, u0

1

)
, τ, ε

)
, τ
)

− g
(
ϕη
(
τ, ε, u 0

1

)
, η
(
ϕη
(
τ, ε, u 0

1

)
, τ, ε

)
, τ
)∣∣ dτ

� c(c51 + c52l)

∫ t

−∞
|ϕη
(
τ, ε, u0

1

)− ϕη
(
τ, ε, u 0

1

)∣∣e−γ (t−τ )/ε dτ

� c(c51 + c52l)
∣∣u0

1 − u 0
1

∣∣ ∫ t

−∞
e−(γ−ε(c41+c42l))(t−τ )/ε dτ

= cε(c51 + c52l)

γ − ε(c41 + c42l)

∣∣u0
1 − u 0

1

∣∣.
Hence, under the assumption of lemma 3.1 the operator T maps C(d, l) into itself. �

Lemma 3.2. Under the assumptions of lemma 3.1 the mapping T : C(d, l) → C(d, l)

is Lipschitzian in η.

Proof. From (3.13), (3.11), (3.6) and (3.4) we get∣∣(T η)
(
u0

1, t, ε
) − (T η)

(
u0

1, t, ε
)∣∣

�
∫ t

−∞
ce−γ (t−τ )/ε

∣∣g(ϕη
(
τ, ε, u0

1

)
, η
(
ϕη
(
τ, ε, u0

1

)
, τ, ε

)
, τ
)

− g
(
ϕη
(
τ, ε, u0

1

)
, η
(
ϕη
(
t, ε, u0

1

)
, τ, ε

)
, τ
)∣∣ dτ

� c

∫ t

−∞
e−γ (t−τ )/ε

(
c51

∣∣ϕη
(
τ, ε, u0

1

)− ϕη
(
τ, ε, u0

1

)∣∣
+ c52

(∣∣η(ϕη
(
τ, ε, u0

1

)
, τ, ε

)− η
(
ϕη
(
τ, ε, u0

1

)
, τ, ε

)∣∣
+ ∣∣η(ϕη

(
τ, ε, u0

1

)
, τ, ε

) − η
(
ϕη
(
τ, ε, u0

1

)
, τ, ε

)∣∣)) dτ

� c(c51 + c52l)

∫ t

−∞
e−γ (t−τ )/ε

∣∣ϕη
(
τ, ε, u0

1

)− ϕη
(
τ, ε, u0

1

)∣∣ dτ

+ cεc52

γ
‖η − η‖. (3.19)

From (3.17), (3.3), and (3.7) it follows∣∣ϕη
(
τ, ε, u0

1

)− ϕη
(
τ, ε, u0

1

)∣∣
�
∫ t

τ

∣∣f (ϕη
(
s, ε, u0

1

)
, η
(
ϕη
(
s, ε, u0

1

)
, s, ε

)
, s
)

− f
(
ϕη
(
s, ε, u0

1

)
, η
(
ϕη
(
s, ε, u0

1

)
, s, ε

)
, s
)∣∣ ds
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�
∫ t

τ

(
c41

∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u0

1

)∣∣
+ c42

(∣∣η(ϕη
(
s, ε, u0

1

)
, s, ε

)− η
(
ϕη
(
s, ε, u0

1

)
, s, ε

)∣∣
+ ∣∣η(ϕη

(
s, ε, u0

1

)
, s, ε

)− η
(
ϕη
(
s, ε, u0

1

)
, s, ε

)∣∣)) ds

�
∫ t

τ

(
(c41 + c42l)

∣∣ϕη
(
s, ε, u0

1

)− ϕη
(
s, ε, u0

1

)∣∣) ds + c42‖η − η‖(t − τ).

According to lemma 2.2 we have

∣∣ϕη
(
τ, ε, u0

1

)− ϕη
(
τ, ε, u0

1

)∣∣ � c42‖η − η‖
c41 + c42l

(
e(c41+lc42)(t−τ ) − 1

)
. (3.20)

Substituting (3.20) into (3.19) and taking into account (3.16) we get∣∣(T η)
(
u0

1, t, ε
) − (T η)

(
u0

1, t, ε
)∣∣

� c(c51 + lc52)

c41 + lc42
c42‖η − η‖

∫ t

−∞
e−γ (t−τ )/ε

(
e(c41+lc42)(t−τ ) − 1

)
dτ + cεc52

γ
‖η − η‖

=
(

ε2c(c51 + lc52)c42

γ (γ − ε(c41 + lc42))
+ cεc52

γ

)
‖η − η‖

= cε

γ

(
ε(c51 + lc52)c42

γ − ε(c41 + c42l)
+ c52

)
‖η − η‖. �

From lemmas 3.1 and 3.2, by applying Banach’s fixed point theorem, we obtain
the result:

Lemma 3.3. Under the assumptions of lemma 3.1 and under the additional condition

cε

γ

(
ε(c51 + lc52)c42

γ − ε(c41 + c42l)
+ c52

)
� q < 1 (3.21)

the operator T has a unique fixed point η∗ in C(d, l).

Since it can be easily checked that u2 = η∗(u1, t, ε) represents an integral manifold
of (3.1), we obtain from lemma 3.3:

Theorem 3.1. Under the assumptions of lemma 3.1 and under the additional condi-
tion (3.21) the singularly perturbed system (3.1) has an integral manifold Md,l

ε :=
{(u1, u2) ∈ Rm+k: u2 = η∗(u1, t, ε)}, where η∗ belongs to the class C(d, l).

Remark 3.2.It is obvious that the inequalities (3.14), (3.15), (3.16), and (3.21) are sat-
isfied for sufficiently small ε. Hence, theorem 3.1 can be formulated as
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Theorem 3.3. Under the assumptions (A1)–(A3) and for sufficiently small ε the sin-
gularly perturbed system (3.1) has an integral manifold Md,l

ε := {(u1, u2) ∈ Rm+k:
u2 = η∗(u1, t, ε)} where η∗ belongs to the class C(d, l).

For given d and l the inequalities (3.14), (3.15), (3.16), and (3.21) determine a
maximal positive number ε∗(d, l) such that (3.1) has an integral manifold Md,l

ε for
0 < ε < ε∗. With respect to applications we want to maximize ε∗. Since we are
more interested to prescribe a small neighborhood of the origin (measured by d) than a
small Lipschitz constant, we will use l to maximize ε∗.

If c41 = c42 = c51 = c52 = 0 then the inequalities (3.15), (3.16) and (3.21) are
satisfied trivially. Now we assume that at least one of these constants is positive.

From (3.16) and (3.15) we get the inequalities

ε <
γ

c41 + c42l
=: ε1(l),

ε� lγ

c(c51 + c52l)+ l(c41 + c42l)
=: ε2(l).

It is obvious that

ε1(l) � ε2(l) for l � 0.

Under the condition (3.15), the inequality (3.21) is equivalent to

ε2c(c51c42 − c52c41)+ εγ (c52c + c41 + c42l) < γ 2. (3.22)

Let us introduce the notation

κ := c(c42c51 − c41c52), µ := cc52 + c41 + c42l.

In case κ = 0, (3.22) reads

ε <
γ

c52c + c41 + c42l
:= ε3(l).

It is easy to verify that ε2(l) � ε3(l) for all l � 0.
The case κ < 0 can be reduced to the case κ = 0. Now we assume κ > 0. In that

case, (3.22) is equivalent to

ε2 + ε
γ µ

κ
<

γ 2

κ
. (3.23)

It is obvious that (3.23) is satisfied for

ε <
γ

2κ

(
− µ+

√
µ2 + 4κ

)
= 2γ√

µ2 + 4κ + µ
=: ε4(l).

Proving that ε2(l) � ε4(l) for l � 0 is equivalent to establishing that

l

cc51 + lµ
� 2√

µ2 + 4κ + µ
.
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This inequality holds if we have

l2κ � c2c2
51 + cc51lµ. (3.24)

The validity of (3.24) follows from the obvious inequality

lκ � cc51µ.

Consequently, to maximize ε∗ as a function of l we have to look for the maximum
of ε2(l). It is easy to verify that ε2(l) takes its maximum

γ

cc52 + 2
√

cc51c42 + c41

at

l = l∗ :=
√

cc42c51

c42
.

Thus, we have:

Lemma 3.4. Under the assumptions c51 > 0, c42 > 0, ε∗ takes its maximum for l = l∗.

4. Local state space reduction

Let us return to our original n-dimensional system

dz

dt
= h(z, t), (z, t) ∈ Rn × R, (4.1)

and assume that h is twice continuously differentiable with respect to z and t . The goal
of our investigations is to derive conditions which ensure that we can approximate a so-
lution of (4.1) in some regions of the (z, t)-space by a solution of a system of differential
equations whose dimension of the state space is less than n. To justify such a reduction
we will exploit the existence of an attracting locally invariant manifold (a.l.i.m.) of (4.1)
near the point (z0, t0). For these purposes we transform system (4.1) into a form to which
we can apply theorem 3.1.

Let (z0, t0) be a given point. We use the upper index 0 in order to indicate that we
consider some expression at the point (z0, t0). Under our differentiability assumptions,
(4.1) is equivalent to the system

dz

dt
= h0 + J 0(z − z0)+ h̃(z, t, z0, t0), (4.2)

where

h̃(z, t, z0, t0) = h(z, t)− h0 − J 0(z− z0), J 0 = hz(z0, t0).

Near (z0, t0) we have

h̃(z, t, z0, t0) = O
(|z− z0|2 + |t − t0|

)
.
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Now we compute the spectrum σ 0 of J 0 and decompose it into the disjoint sets σ 0−ν and
σ 0

r where the real parts of all eigenvalues of σ 0−ν are less than −ν, ν > 0. From the
method of block diagonalization it follows that there is a regular matrix T such that

T −1J 0T =: S0 = diag
(
S0

11, S0
22

)
, (4.3)

where S0
11 and S0

22 are upper triangular matrices with possible non-vanishing en-
tries on the first sub-diagonal related to complex conjugate eigenvalues and such that
σ (S0

11) = σ 0
r , σ (S0

22) = σ 0−ν . Applying the coordinate transformation z = z0 + T u we
get from (4.2)

du

dt
= T −1h0 + S0u+ T −1h̃(z0 + T u, t, z0, t0). (4.4)

Taking into account the block diagonal structure (4.3) we may represent (4.4) in the form

du1

dt
= ĥ 0

1 + S0
11u1 + h1(u, t, z0, t0),

(4.5)
du2

dt
= ĥ 0

2 + S0
22u2 + h2(u, t, z0, t0).

Now we multiply the second equation with εν, εν := ν−1, and denote by S
0
22 the

matrix defined as S
0
22 := ενS0

22. Then (4.5) reads

du1

dt
= ĥ 0

1 + S0
11u1 + h1(u, t, z0, t0),

εν

du2

dt
= ενĥ 0

2 + S
0
22u2 + ενh2(u, t, z0, t0),

where all eigenvalues of S
0
22 have real parts less than −1. In what follows we consider

the singularly perturbed system

du1

dt
= S0

11u1 + ĥ 0
1 + h1(u, t, z0, t0),

(4.6)
ε

du2

dt
= S

0
22u2 + εĥ 0

2 + εh2(u, t, z0, t0)

for 0 < ε � εν which has the same structure as system (3.1) with

f (u1, u2, t)= S0
11u1 + ĥ 0

1 + h1(u1, u2, t, z0, t0),

g(u1, u2, t)= ĥ 0
2 + h2(u1, u2, t, z0, t0).

For ε = 0, (4.6) has the invariant manifold u2 ≡ 0. If we are able to prove that (4.6)
has an a.l.i.m. u2 = η∗(u1, t, ε) = εϕ(u1, t) + O(ε2) for 0 < ε � εν passing through
a d-neighborhood of (u = 0, t = t0) then we can conclude that also (4.1) has a locally
invariant exponentially attracting manifold near (z0, t0). If additionally (z0, t0) lies in the
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region of attraction of this invariant manifold and d is small then we can approximate
the orbit of (4.1) through (z0, t0) by an orbit of the reduced differential system

du1

dt
= S0

11u1 + ĥ 0
1 + h1

(
u1, εϕ(u1, t), t, z0, t0

)
. (4.7)

Now we describe the procedure to finding out the essential variables in system (4.1)
near (z0, t0) by means of theorem 3.1 which is equivalent to a local reduction of the state
space.

S1. We compute the spectrum σ 0 of J 0. If σ 0 has no eigenvalue with negative
real part, then we replace (z0, t0) by another point (which we get, for example,
by numerical integration starting at (z0, t0)). In case we do not find any point
(z0, t0) we are not able to reduce the dimension of the phase space by this
method.

S2. We assume σ 0 has eigenvalues with negative real parts −λk < · · · < −λ1 < 0
(it suffices to have at least one). We choose a negative number −ν, the so-
called splitting parameter, such that we have −λj < −ν < −λj−1 for some j

and compute the real Schur decomposition S0 = diag(S0
11, S0

22) to the splitting
parameter −ν, that is

Re σ (S0
22)�−λj � −ν,

Re σ (S0
11)�−ν.

In case that the eigenvalues of S0
22 with the real part −λj are simple, we can

put ν = λj in all other cases we assume ν < λj . Now we set εν := ν−1. Thus,
we have Re σ (S0

22) < γ = 1.

S3. We transform (4.1) into the form (4.6).

S4. Let 94 be the ball in Rm
u1
× Rk

u2
× R with radius 4 centered at (0, t0). We

choose a (small) number d (c.f. (3.5)) and derive estimates for the constants
c1, c2, c41, c42, c51, c52 introduced in assumption (A2) with respect to 9d .

S5. We compute the constant c to estimate |eB(t−τ )/ε|. (In the case where all eigen-
values are simple we can set c = 1.)

S6. We calculate l∗ and check the inequalities (3.14)–(3.16) and (3.21) with
γ = 1, ε = εν . If the inequalities are satisfied then we can state the exis-
tence of a local integral manifold of (4.1) in 9d by means of theorem 3.1, and
system (4.1) can be reduced to (4.7). If the inequalities are not satisfied we
go back to S2 and choose a splitting parameter ν with larger modulus, i.e., the
corresponding εν becomes smaller.

S7. In case we cannot further increase the modulus of ν we replace (z0, t0) by
another point and go back to S1.
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In case that d is sufficiently small we can approximate the constants c2, . . . , c52 as
follows:

c2 ≈
∣∣̂h 0

2

∣∣, c41 ≈
∣∣S0

11

∣∣, c42 ≈ 0, c51 ≈ 0, c52 ≈ 0.

If we use these approximations we call the corresponding algorithm a simplified algo-
rithm. In case of the simplified algorithm we have ε1(l) ≡ ε2(l) ≡ ε3(l) ≡ ε4(l) ≡
‖S0

11‖−1. Thus, the Lipschitz constant l has no influence on ε∗. To prove that (4.6)
has an invariant manifold for ε = εν we have to verify the inequalities (3.14)–(3.16)
and (3.21) which are equivalent under our assumptions to

|S0
11|
ν

< 1,
c|̂h 0

2|
ν

< d. (4.8)

We note that in the case when all eigenvalues of J 0 have negative real parts then the first
of the inequalities (4.8) is always satisfied.

5. Examples

The following examples of chemical reactions will be used to illustrate our simpli-
fied algorithm to determine fast and slow variables by localizing an invariant manifold,
and therefore, to give a local reduction of the dimension of the state space. All necessary
calculations were performed by MAPLE and MATLAB.

5.1. Example by Duchêne and Rouchon

The following simple reaction scheme has been considered in [17]:

X1
k1−→ X2, X2

k2−→ X1, X1 +X2
δk0−→ X2 +X3,

where X1, X2, X3 are chemical species, and k1, k2, and δk0 are reaction rate constants.
The small parameter δ > 0 is used to indicate that the third reaction is slow in compar-
ison with the other two reactions. This reaction scheme can be described by the system
of ordinary differential equations

dx1

dt
=−k1x1 + k2x2 − δk0x1x2,

dx2

dt
= k1x1 − k2x2,

dx3

dt
= δk0x1x2,

where xi is the concentration of Xi, i = 1, 2, 3. It is obvious that the third equation is a
linear combination of the first and the second one so that we can restrict ourselves to the
system

dx1

dt
=−k1x1 + k2x2 − δk0x1x2,

(5.1)
dx2

dt
= k1x1 − k2x2.
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Before we apply our (simplified) algorithm to (5.1) we will prove the existence of
an invariant manifold for (5.1) and derive an asymptotic approximation for it. This way
we will be able to study the effectivity of the proposed procedure.

By means of the coordinate transformation ξ = x1+x2, x2 = x2 we get from (5.1)

dξ

dt
=−δk0(ξ − x2)x2,

(5.2)
dx2

dt
= k1(ξ − x2)− k2x2.

By rescaling the time t, t = δ−1τ , and introducing the notation

ξ
(
δ−1τ

) = y1(τ ), x2
(
δ−1τ

) = y2(τ ),

we obtain from (5.2)

dy1

dτ
=−k0y1y2 + k0y2

2 ,

(5.3)
δ

dy2

dτ
= k1y1 − (k1 + k2)y2,

which represents a singularly perturbed system. The corresponding degenerate equation

0 = k1y1 − (k1 + k2)y2 := g(y1, y2)

has the unique solution

y2 = h0(y1) := k1

k1 + k2
y1,

moreover, the corresponding inequality holds:

J
(
y1, h0(y1)

) := ∂g

∂y2

∣∣∣∣
y2=h0(y1)

= −(k1 + k2) < 0.

By the transformation

y2 = w2 + k1

k1 + k2
y1,

we obtain from (5.3) the system

dy1

dτ
=− k0k1k2

(k1 + k2)2
y2

1 +
k0(k1 − k2)

k1 + k2
y1w2 + k0w2

2,

(5.4)

δ
dw2

dτ
=−(k1 + k2)w2 − δk1

k1 + k2

{
− k0k1k2

(k1 + k2)2
y2

1 +
k0(k1 − k2)

k1 + k2
y1w2 + k0w2

2

}
,

which has the form (3.1). It is easy to verify that in a compact region of the phase plane
all conditions of theorem 3.1 are satisfied for sufficiently small δ. Thus, (5.4) has an
invariant manifoldMδ of the form

w2 = δϕ1(y1)+ O
(
δ2).
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A straightforward computation yields

ϕ1(y1) := k0k2
1k2

(k1 + k2)4
y2

1 ,

hence, we have

w2 = δ
k0k2

1k2

(k1 + k2)4
y2

1 + O
(
δ2
)
.

In the original coordinatesMδ has the implicit representation

x2 = k1

k1 + k2
(x1 + x2)

(
1+ δ

k0k1k2

(k1 + k2)3
(x1 + x2)+ O

(
δ2)). (5.5)

In what follows we apply the simplified algorithm to system (5.1) in order to decide
whether near a given point x0 the dimension of the phase space can be reduced. In the
sequel we fix the parameters as

k0 = 10, k1 = 2, k2 = 3, δ = 0.01,

so that (5.1) reads

dx1

dt
=−2x1 + 3x2 − 0.1x1x2,

dx2

dt
= 2x1 − 3x2.

Table 1 contains the sample of four points (x0
1 , x0

2 ) to be considered.
Now we use our simplified approach to check whether these points are near an ex-

ponentially attracting integral manifold of system (5.1) and thus, whether the dimension
of the phase space may be reduced in some neighborhood of these points.

First we apply the coordinate transformation described in section 4 to (5.1) with
respect to each initial point (cases I0–IV0). In case I0 we obtain

du1

dt
=−1.1889 − 0.3704u1 − 0.0335u2

1 − 0.0073u1u2 + 0.0356u2
2,

du2

dt
=−14.8091 − 5.1296u2 + 0.0292u2

1 + 0.0064u1u2 − 0.0311u2
2.

We get analogous systems in the other cases.

Table 1
Coordinates of the first sample.

I0 II0 III0 IV0

x0
1 2.0000 0.5000 3.0000 0.0000

x0
2 5.0000 2.0000 0.5000 0.0000
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Table 2
Characteristic data determined by the simplified algorithm.

I0 II0 III0 IV0

λ1 −0.3704 −0.1383 −0.1532 0

λ2 = −ν −5.1296 −5.0617 −4.8968 −5

|S0
11|/ν 0.0722 0.0273 0.0313 0

|̂h 0
2 |/ν 2.8870 1.3642 1.2978 0

d 0.3 0.3 0.3 0.3

|T | 1.0876 1.1011 1.0765 1.1049

|T | d = r0 0.3263 0.3303 0.3229 0.3315

Table 3
Coordinates of the second sample.

Ia IIa IIb IIIa

x0
1 3.6247 1.2147 1.3204 2.2301

x0
2 2.7154 1.3286 1.1027 1.2067

As neighborhood 9d of u1 = u2 = 0 we choose a disc with radius d = 0.3, that is,
90.3 := {u ∈ R2: |u| � 0.3}. From x − x0 = T u we get∣∣x − x0

∣∣ � |T | d := r0.

Since the eigenvalues are simple, we set ε−1
ν = ν = |λ2|, so that we have γ = 1.

Obviously, c = 1 holds, and we obtain the results represented in table 2.
Since all eigenvalues are negative the condition |S0

11|/ν < 1 is satisfied in all cases,
but the condition |̂h 0

2|/ν < d = 0.3 does not hold in the cases I0–III0.
Figure 1 shows the invariant manifold M (dotted line) and the solutions of (5.1) for

the start points I0–IV0. It can be seen that corresponding trajectories tend to the curve
M which is the zeroth-order approximation of the attracting invariant manifoldMδ , and
that u1 = u2 = 0 is located on M. The disks centered at the corresponding points have
the radii r0 = |T |d. We should note that T , and hence r0, depends on the given point. If
the inequalities (4.8) are satisfied for some points, then the corresponding balls contain
an a.l.i.m. of (5.1).

It is obvious that in the cases I0–III0 the initial points have a distance to M which
is larger than r0.

Now we compute the trajectories with the initial points I0–III0 for some time steps
and get the new points described in table 3. If we repeat the calculations above we obtain
the results represented in table 4.

We see that the inequality |̂h 0
2 |/ν < 0.3 is not satisfied only in the case IIa. More-

over, figure 1 shows that the computed points Ia, IIb, IIIa have a distance to M which
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Figure 1. Invariant manifold M and location of the selected points.

Table 4
Characteristic data determined by the simplified algorithm.

Ia IIa IIb IIIa

λ1 −0.3084 −0.1262 −0.1182 −0.1613

λ2 = −ν −4.9616 −5.0079 −4.9916 −4.9631

|S0
11|/ν 0.0622 0.0252 0.0237 0.0325

|̂h 0
2 |/ν 0.1369 0.3995 0.1788 0.2555

d 0.3 0.3 0.3 0.3

|T | 1.0711 1.0943 1.0933 1.0846

|T | d = r0 0.3213 0.3283 0.3279 0.3254

is smaller than r0 that is, the corresponding balls contain an a.l.i.m., but in the case IIa
this distance is larger than r0. Thus, the cases IIa and IIb show how exactly the method
works. Consequently, in the cases Ia, IIb and IIIa the phase space can be reduced.
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5.2. Oregonator

The following differential system describes the basic mechanism of the oxidation
of malonic acid in an acid medium by bromate ions catalyzed by cerium, of the so-
called Belousov–Zhabotinskii reaction. It represents the Field–Noyes model also known
as Oregonator. We consider it in the form (see, e.g., [18])

δ1
dx1

dt
= x1 + qx2 − x1x2 − x2

1 ,

dx2

dt
= δ−1

2 (−qx2 + 2f x3 − x1x2), (5.6)

dx3

dt
= x1 − x3,

where δ1, δ2, and q are small positive constants, f is assumed to be near 0.5. Sys-
tem (5.6) has two biochemically relevant equilibrium points P u = (0, 0, 0), P s =
(xs

1, xs
2, xs

3), where

xs
1 =

1

2
(1− 2f − q)+ [(1− 2f − q)2 + 4q(1 + 2f )

]1/2
,

xs
2 =

2f xs
1

q + xs
1

,

xs
3 = xs

1.

The equilibrium point P u = (0, 0, 0) is unstable, the Jacobi matrix of (5.6) at P s

has at least one eigenvalue with negative real part (see also [18]). By a suitable choice
of the constants δ1, δ2, q, the equilibrium point P s can be made asymptotically stable.
It can be shown that to given δ2, q, f , system (5.6) has for sufficiently small δ1 an
invariant manifoldMδ (see [23,24]). In what follows we set

δ1 = 10−5, δ2 = 10−1, q = 10−4, f = 0.5.

Then, the zeroth-order approximation of Mδ can be obtained by setting δ1 = 0 in the
first equation of (5.6)

x1 + 10−4x2 − x1x2 − x2
1 = 0 (5.7)

and solving this equation with respect to x1. It is obvious that the branch k of the so-
lution set of (5.7) is located in the positive orthant of the (x2, x1)-plane and can be ap-
proximated by the straight lines x1 = 1− x2 for 0 < x2 � 1 and by x1 = 0 for x2 > 1.
The projection of the zeroth-order approximation of Mδ into the (x2, x1)-plane coin-
cides with the curve k. Now we consider the sample of points described in table 5 and
ask whether near these points there is an attracting locally invariant manifold (a.l.i.m.)
such that we can reduce the dimension of the phase space. There exists a coordinate
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Table 5
Coordinates of the first sample.

I0 II0 III0

x0
1 1.1000 0.3000 0.0141

x0
2 1.2000 0.5000 0.9929

x0
3 1.1000 0.4000 0.0141

Table 6
Characteristic data determined by the simplified algorithm.

Ia Ib II0 III0

λ1 −2.5559 −2.5559 +2.0016 +0.0345

λ2 −3.9455 −3.9455 +8.9775 +5.3791

λ3 −240005 −240005 −10014 −2120

ν |λ2| |λ3| |λ3| |λ3|
|S0

11|/ν 0.6478 1.64 × 10−5 8.9649 × 10−4 2.5368 × 10−3

|̂h 0
2 |/ν 33176 0.5445 0.1901 0

d 10−3 10−3 10−3 10−3

|T | 8.4057 8.4057 5.1049 2.8256

|T | d = r0 0.009 0.009 0.006 0.003

transformation x − x0 = T u such that system (5.6) takes the form (4.5). In case I0 we
obtain

du1

dt
=−2.5559u1 + 11.1917 + 2.6319u2

1 + 11.6813u2
2 + 192.09u2

3

− 11.4474u1u2 + 44.9696u1u3 − 97.7963u2u3,

du2

dt
=−3.9455u2 − 1.9696 − 0.6516u2

1 − 2.1624u2
2 − 47.5535u2

3
(5.8)+ 2.5652u1u2 − 11.1326u1u3 + 21.9149u2u3,

du3

dt
=−240005u3 + 130897 − 17521u2

1 + 109257u2
2 − 1279179u2

3

+ 7326.14u1u2 − 299466u1u3 + 62583u2u3.

We obtain analogous systems in the other cases. Our goal is to show that near some
points u = u0 there is an attracting locally invariant manifold of (5.8). We note that the
coefficients of the higher order terms in (5.8) are large. In order to be able to apply our
simplified algorithm we have to choose the radius d sufficiently small. In our case we set
d = 10−3. The corresponding radius in the original coordinates can then be estimated
by r0 = |T |d. The results of our simplified algorithm are summarized in table 6.

Since in case I0 three different negative eigenvalues exist we can use two essentially
different scaling parameters (ν = |λ2| in case Ia and ν = |λ3| in case Ib), but the fact
that the initial point in case I is far from the invariant manifold implies that no scaling
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Table 7
Coordinates of the second sample.

Ic IIa

x0
1 0.0002 0.4623

x0
2 1.4300 0.5414

x0
3 0.0002 0.4623

Table 8
Characteristic data determined by the simplified algorithm.

Ic IIa

λ1 −0.0020 −0.1010 + 3.0313i

λ2 −0.9975 −0.1010 − 3.0313i

λ3 −40040.0 −46005.4

ν 40040.0 46005.4

|S0
11|/ν 2.4912 × 10−5 2.1959 × 10−5

|̂h 0
2 |/ν 1.4975 × 10−4 1.1823 × 10−4

d 10−3 10−3

|T | 10.1441 2.6543

|T | d = r0 0.011 0.003

is successful. The inequalities (4.8) can be verified only in case III0 which represents a
stable equilibrium point. In that case, our algorithm says that in a ball with radius 0.003
centered at the equilibrium point an a.l.i.m. of (5.6) is located. This fits into the theory
that the equilibrium point is located on the invariant manifold.

Now we use numerical integration to get new points in the cases I0 and II0 repre-
sented in table 7.

Table 8 contains the characteristic data determined by the simplified algorithm ap-
plied to these new points.

Now, in both cases the conditions (4.8) are satisfied and we can justify the existence
of an a.l.i.m. of system (5.6) in a sphere with radius 0.01 in case Ia and 0.003 in case IIa.

5.3. Simplified reaction mechanism describing dynamics of ozone in the troposphere

The following simplified reaction mechanism describing the dynamics of species
in the troposphere was introduced in [20]:

O3 + hν + (H2O)
k1→ 2HO·+ (O2),

HO·+ CO+ (O2)
k2→ HO·2 + (CO2),

HO·2 + O3
k3→ HO·+ (2O2),

NO+ O3
k4→ NO2 + (O2),
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NO2 + hν + (O2)
k5→ NO+ O3,

HO·2 + NO
k6→ HO·+ NO2,

HO+ NO2
k7→ (HNO3).

In this mechanism the concentrations of species O2 and H2O are assumed to be con-
stant. Presence of hν is some of the relations means that the corresponding reactions
are photochemical. The numerical values of reaction rate constants are taken to be
k1 = 6.9 × 10−8, k5 = 3.9 × 10−3 (s−1), k2 = 1.9 × 10−13, k3 = 1.5 × 10−15,
k4 = 7.9× 10−15, k6 = 9.6× 10−12, k7 = 1.3× 10−11 (cm3/(molec·s)).

The emissions of CO, O3 and NO are also taken into account. Their corresponding
rates in molec/(cm3 · s) are FCO = 5.0 × 105, FO3 = 6.0× 104; FNO is considered to be
a parameter of order O(104–105). In what follows, the time variable is scaled by 106 s.

Under condition of ideally mixed troposphere the behavior of the concentrations
of the species is described by the system of ordinary differential equations

dx1

dt
=−k2x1x5 + FCO,

dx2

dt
=−k1x2 − k3x6x2 − k4x3x2 + k5x4 + FO3 ,

dx3

dt
=−k4x3x2 + k5x4 − k6x6x3 + FNO,

(5.9)
dx4

dt
= k4x3x2 − k5x4 + k6x6x3 − k7x5x4,

dx5

dt
= 2k1x2 − k2x5x1 + k3x6x2 + k6x6x3 − k7x5x4,

dx6

dt
= k2x5x1 − k3x6x2 − k6x6x3.

Here x1, x2, x3, x4, x5 and x6 are the concentrations of CO, O3, NO, NO2, HO and
HO2, respectively. System (5.9) has been studied in [19]. Depending on FNO, different
types of the long-time behavior of solutions to this system have been observed. They
include (case I) transition to a stable steady state (FNO = 1.5 × 104, see figure 2(a)),
(case II) a stable limit cycle (FNO = 5.0 × 104, see figure 2(b)), (case III) chaotic
behavior (FNO = 7.6× 104, see figure 2(c)).

Estimation of a number of phase variables sufficient for complete description of
all the types of behavior mentioned above is an important topic actively discussed in the
literature (see, e.g., [25,26]). Most authors, however, currently use heuristic methods for
the analysis.

Here we apply the simplified algorithm to study the dimension of the underlying
long-time dynamics of the originally six-dimensional tropospheric model. For that we
choose some points which are located on or very near to the trajectories represented in
the figures above. The points used in the algorithm are presented in table 9.
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(a)

(b)

(c)

Figure 2. (a) Solution of (5.9) tending to an equilibrium. (b) Periodic solution of (5.9). (c) Chaotic solution
of (5.9).

Table 9
Points chosen on the trajectories shown in figure 2(a)–(c).

I (×107) IIa (×106) IIb (×107) IIIa (×105) IIIb (×107)

x0
1 13536 507481 31361 1643120 66123

x0
2 11051 360233 34711 5384483 58646

x0
3 1 4009 1 1683876 2

x0
4 6 2944 1 1837126 2

x0
5 2 1 4 3 3

x0
6 186 3 332 6 368
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Table 10
Characteristic data determined by the simplified algorithm.

I IIa IIb IIIa IIIb

λ1 −2 + 5i 0.0 −3+ 9i 0.0 −0.0 + 0.0i

λ2 −2 − 5i 0.0 −3− 9i 0.0 −0.0 − 0.0i

λ3 −2 −0.0 −2 −0.0 −0.0

λ4 −306 −6870 −499 −8290 −440

λ5 −21734 −9010 −58194 −59310 −43750

λ6 −27545 −164660 −61922 −654170 −129240

ν 306 6870 499 8290 440

|S0
11|/ν 0.007 0.0 0.006 0.0 0.0

|̂h 0
2 |/ν 0.0068 0.0057 0.0577 0.1085 0.048

d 0.01 0.01 0.06 0.12 0.06

|T | 1.8014 1.7558 1.8828 1.7043 1.8843

|T | d = r0 0.018 0.01756 0.1130 0.2045 0.1131

Chosen points are taken at different locations on various trajectories representing
characteristic features of possible types of behavior of the system. Point I corresponds
to a situation when the trajectory relaxes to a stable steady state. It is known that oscil-
latory trajectories of the tropospheric chemistry systems usually have two very distinct
phases: so-called, high- and low-NOx regimes (i.e., the regimes for which the concen-
trations of both NO and NO2 are high or low; see, e.g., [27]). These two regimes are
characterized by domination of completely different underlying chemical processes, and
that is why the question on estimation of local underlying dimensions for both cases is
so very interesting. Points IIa and IIb belong to an oscillatory trajectory for high- and
low-NOx subintervals within a period of an oscillation, respectively. Points IIIa and IIIb
correspond to high- and low-NOx situations in the case of chaotic behavior of the system.

Same as in the previous examples, we represent the values of various parameters
computed according to the simplified algorithm in table 10. We note that in this example
c = 1 also.

In all cases condition (4.8) is satisfied, and thus, we can conclude that the dimen-
sion of the underlying long-time dynamics for tropospheric chemistry model that we
discuss in this section can be estimated by 3.

6. Conclusion

In this paper we presented and justified an algorithm that allows us to estimate local
dimension of long-time dynamics in multi-scale systems. The special feature that dis-
tinguishes this approach from other widely used asymptotic approaches is the following.
When using asymptotic reduction algorithms, the dimension of the underlying dynamics
is defined in the limit when some small parameters tend to zero (or large parameters
tend to infinity). This approach is useful when the corresponding mathematical model
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is given in the form of a singularly perturbed system (1.2). But in other situations, with
given numerical values of coefficients, it is often difficult to decide which parameters
are small (large) and which are not, and how the numerical choice of small (large) para-
meters is related to the procedure of taking the limit and making prediction on the local
dimension of slow dynamics. In our approach the local dimension is estimated explicitly
for a given problem in terms of given numerical values of coefficients and parameters
entering formulation of a problem. The estimate is valid for the vicinity of a particular
chosen point of interest, and the size of this vicinity is also determined numerically by
the algorithm.

We illustrated the algorithm by applying it to three non-trivial chemical kinetics
examples. The results obtained using our algorithm (especially, for the tropospheric
chemistry model) are difficult to derive using other methods. These results are not only
of theoretical, but also of high practical importance to the researchers working in the
area of tropospheric chemistry.

Finally, we would like to mention that, in principle, our local analysis can also be
used to derive an algorithm for a dynamic reduction of the dimension of the state space
for systems with multiple time-scales. In addition, it can be applied for approximation
of invariant manifolds for such systems.
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